
CS 221 Lecture 

Tuesday, 20 September 2011 



Today’s Agenda 

1. Announcements 

2. DeMorgan’s Laws 

3. Model of Operation 

4. MATLAB: Catch-up Topics 

– Syntax and Semantics 

– Input and Output 

– Strings 

– Conditional Statements in MATLAB 

5. Homework Hints 

 



Announcements 

• Problem set 1 due tomorrow night (9/21)! 

• Lab Quiz 1 next Thursday (9/29) 

– Coverage:  Excel and MATLAB fundamentals 

– Preparation: anything you’ve been asked to do in lab 

or homework so far 
• Formulas and expressions 

• Conditionals – translate description into boolean expression 

• In-class Quiz 1 in two weeks (10/4) 

– Coverage: everything in lecture and lab 

– Prep: practice exam next week 



DeMorgan’s Laws 

• Negation (NOT, ~) distributes over conjunction, but 
turns it into disjunction: 

  ~(A  B)  =   ~A  ~B 

  NOT( AND(A,B) )  =  OR( NOT(A), NOT(B) ) 

• Negation distributes over disjunction, turning it into 
conjunction: 

  ~(A  B)  =   ~A    ~B 

  NOT( OR(A,B) )  =  AND( NOT(A), NOT(B) ) 

• Negation is its own inverse: 

  ~~A  =  A 

  NOT(NOT(A)) = A 



Thinking About What MATLAB Does 

• General model of a running program: 



Model of Operation 



What’s Happening Behind the Door 



What the Genie Does 

When a command comes through the slot: 

– Parse it to see if it is understandable (syntactically 

valid) 

– If valid: 

• carry out the command; output the result 

– else: 

• output an error message describing the problem 



Syntax and Semantics 

• Syntax:  the structure of the commands the 
Genie (program) understands 

– Think grammar 

– Example:  “sentence not this” 

    “brilliant gathering slowly icicle” 

• Semantics: the meaning of a properly-structured 

command 



MATLAB Commands 

Commands come in three flavors: 

• Built-in commands that control MATLAB 

– Examples:  clc, format, help, who ... 

• Names of scripts 

– Script: file that contain a sequence of commands 

• Expressions 

– Made up of: 

• constants 

• variable names 

• operators – including functions like sqrt() and mod() 



Variables in MATLAB 

• Variables:  labeled “drawers” for holding values 
– Names must begin with a letter 

– Any combination of letters, numbers and underscores 
• Tip: don’t use variable names longer than 63 characters 

– Case sensitive 
• ThisIsAValidVariableName 

• car47velocity 

• initial_condition 

– Invalid names: 
• 2ndDerivative 

• map-distance 

• tax_rate_% 



Interpreting Commands 

• if the command contains an operator: 
(it is an expression) 

– evaluate the operands (subexpressions) 

– apply the operator to the results (operands) 

• elseif the command is a numeric constant 
– assign the value of the constant to the variable ans 

• elseif the command is the name of a variable 
– assign the value of the variable to the variable ans 

• else 
– look for a built-in command or script (m-file) that matches the 

word; if one exists, execute it, else print error message end 

• end 



Assignment 

• Note:  “=”  is the assignment operator 

– It is not the same thing as equality! 

• Assignment expressions have the form: 

  <variable name> = <expression> 

 Assignment is not commutative! 

– Variable name must be on LHS 

– RHS evaluated first 

– RHS expression may contain <variable name> 

   e.g.,      t = t+1       or     x = x - y 



Semicolon 

• Normally the Genie produces output that 
describes what assignment was done 

• Putting a semicolon after the expression 
suppresses that output 

• But the assignment still happens 



Scripts 

• A script or m-file is a file containing a sequence 
of MATLAB commands 

– suffix:  .m 

• When the Genie executes a script, it behaves as 

if each command had come through the slot 
individually – in order, one at a time 

• Scripts save typing by allowing you to repeat the 
same computation over and over 



Input and Output 

• The input() function allows interaction with the user 
– used inside a script to get the input 

– Use like this: 
 <variable> = input(‘Please enter something: ’); 

• The simplest way to do output is either: 
– omit the semicolon, or 
– use the disp( ) function: 

  disp(a^2+b^2) 
  disp(’Sorry, your input was invalid.’) 

– disp() prints a carriage return (new line) at the end 

– Print multiple items of the same type by enclosing them in 
square brackets: 
  disp([a^2 + b^2, 2*pi]) 



Strings 

• Almost all programming languages have some kind 
of string data type 

– A string is a finite sequence of characters 

– Strings are useful for interacting with the user 

• In MATLAB, strings are represented as one-

dimensional arrays of characters 

• String constants are enclosed in single quotes 

  ’this is a string constant’    ’123456’ 

• Variables can have values that are strings 

– E.g.,   prompt = ’Please enter a number between 1 and 10’ 



Outputting Strings 

• When MATLAB produces output, it usually 
automatically converts numbers to printable 
format (strings) 

• Sometimes you must use the num2str( ) built-in 

function to convert a number into a string 

You need to do this to print both numbers and strings 

with one call to disp( ): 

 disp([’the answer is: ’  num2str(result)]); 



Inputting Strings 

• Note that input( ) evaluates the string read from 
the keyboard! 

– If you enter 3*2, it returns 6, not  ’3*2’ 

• To get a string from the keyboard, give input( ) 

a second argument: 

 inputstring = input(’Please enter your first name: ’, ’s’); 

  (see help for input ) 



Operations on Strings 

• Concatenation: strcat(str1,str2) returns a single 
string that consists of str1 followed by str2 

• Comparing strings 

– Don’t use “==“ to compare strings 

– Use strcmp(str1, str2) instead 

– It returns true if they are identical, false otherwise 



Conditional Commands (If-statements) 

•  if <boolean expression> 

  <command> 

 end 

– Executes <command> if <boolean expression> 
evaluates to true (nonzero), otherwise does nothing 



Other forms of if-statements 

 if  <boolexp> 
  <command1> 
 else 
  <command2> 
 end 

Meaning:   
 if <boolexp> evaluates to true (nonzero):     
  execute <command1> 
 otherwise, (i.e., <boolexp> evaluates to false (zero)): 
  execute <command2> 

 
Note well: no boolean expression after else!  (Why?) 



Nested if-statements 

Sometimes you need to test a bunch of conditions: 
if  score >= 90 

 grade = ‘A’; 
else 

 if score >= 80 
  grade = ‘B’; 
 else 

  if score >= 70 
   grade = ‘C’; 

  else 
   grade = ‘E’; 
  end 

 end 
end 

 



Using if-statements 

The “elseif” form of if-statement just makes this 
cleaner: 

if  score >= 90 

 grade = ‘A’; 

elseif score >= 80 

 grade = ‘B’; 

elseif score >= 70 

 grade = ‘C’; 

else 

 grade = ‘E’; 

end 

– Only one “end” is required 

– Less indentation 



Example 

Write a script to compute the square or cube of a 
given number.  The script should use the input() 
function to ask the user “square or cube?” and act 
according to the value input. 

 

How to approach this? 



Flowcharts 

• Flowcharts are a graphical way to describe 
computations 

• They show the sequence of steps carried out by 
an script 

• Useful for thinking about conditional statements 



Flowcharts 



5. Homework Hints 

• Use COUNT(), not COUNTIF() 

– AVERAGE() may also be OK 


