
Van Jacobson’s
Congestion Avoidance

and Control

presented by Leon Poutievski

Problem: Congestion
• Congestion

– Load exceeds the capacity of the network
– Overflow at router queues

• ATM: channel is reserved during the
connection setup

• IP: if queue is full, packets are dropped

Problem: Congestion
• Problem

– Wasted bandwidth (retransmission required)
– Unpredictable delay

• October 1986: first “congestion collapse”
– Caused by TCP retransmissions

• Scenario:
TCP sends a window's worth of data
Some of it gets lost; the rest sits in queue
Sender times out, retransmits everything
Result: Multiple copies of same data in queue!
(REPEAT)

Problem: Congestion

• Crux of the problem:
– When the router is congested (i.e. its queue is

full), retransmitting data all at once is exactly
the wrong thing to do

– But this is what TCP spec said to do
• Go-back-N protocol

– Send window is the only constraint on
sending rate

sending rate = send window

RTT

Extremely
important
concept!

Problem: Congestion

• Thus: send window controls how fast sender x-mits
• Original TCP (flow control):

send window := rcv window
• Conclusion: sender should also consider the

network capacity
• Idea: reduce send window to reduce rate under

congestion
• Solution: add congestion window

send window := min (rcv window, congestion window)

"Conservation of packets" principle

• Equilibrium = “stable,
full window of data in transit”

• “Conservative” packet flow
– New is not put into network until an old leaves

• Possible problems with packet conservation
1. Didn’t get to equilibrium
2. Sender ejects new packets before old has exited
3. Equilibrium can’t be reached

Getting to Equilibrium: Slow-start
• Self-clocking system

– Automatically adjusts to BW & delay variations
– Sender uses ACK as a ‘clock’
– Hard to start

• Packet size (area) = BW x time

Slow-start algorithm

• Add "congestion window" to algorithm
– send window := min (rcv window, cwnd);

• When starting (restarting)
cwnd := 1 packet;

• On ACK for new data
cwnd += 1 packet;

Slow-start, analysis

• “Slow” is misnomer:
– rate grows exponentially
– On each ack 2 pkts are sent

• one for the packet acked (left n/w)
• one to increase the window

– So SWS doubles every RTT

• It takes R log2 W
• R: round trip time
• W: window size in packets

Slow-start, analysis

Without Slow-start With Slow-start

Conservation at Equilibrium
(round-trip timing)

• Need good estimate of
– RTT mean estimate
– RTT variation estimate

• It increases quickly with load

for retransmit timeout interval (rto)
(described later)

• Exponential backoff after retransmit
– Reasoning: linear systems

Congestion avoidance
(adapting to the path)

• Assumption:
– Losses are due to congestion

• Losses due damage are rare (<< 1%)

• Strategy
– If congestion, network must signal to

endpoints so that endpoints decrease
utilization

– If no congestion and thus no signals,
endpoints increase network utilization

Congestion avoidance
Multiplicative decrease

• Li = N + λ Li-1,
Li – load at interval i, average queue length
N – constant

• λ ≈ 0, no congestion
• λ > 1, congestion

– Ln = λn L0, , grows exponentially

• System stabilizes only if traffic is reduced
as quickly as queues are growing

Congestion avoidance:
Multiplicative decrease

• On congestion: Wi = d Wi-1 (d < 1)
• Take d = 0.5, Wi = Wi-1 / 2

– Motivation: give up ½ BW for a new
connection, everybody adapts to new situation

• Congestion detection
– Did not receive any ack (timeout)
– Received 3 duplicate acks

Congestion avoidance
Additive increase

• Also known as "Additive Increase,
Multiplicative Decrease" (AIMD)
– Refers to change in cwnd per RTT

• If no congestion detected:
Wi = Wi-1 + u (u << Wmax)
– Take u = 1, so Wi = Wi-1 + 1

Congestion avoidance
Algorithm

• On timeout:
cwnd = send window / 2; //multiplicative decrease

• On ack:
cwnd += 1 / cwnd; //additive increase

• send window := min (rcv window, cwnd);

Congestion avoidance, Analysis
(sequence numbers)

No congestion avoidance With congestion avoidance

Congestion avoidance, Analysis
(relative BW)

Total BW Delivered BW

No congestion avoidance With congestion avoidance

Combined algorithm
(slow start + congestion avoidance)

• cwnd = congestion window
• ssthresh = threshold, to switch between

algs
• send window = min (rcv window, cwnd);
• On timeout:

ssthresh = send window / 2; //mult. decrease, cong. avoid.
cwnd = 1; //start slow start

• On ack on new data:
if (cwnd < ssthresh)

cwnd += 1 //slow start
else

cwnd += 1/cwnd; //congestion avoidance

Conservation at Equilibrium

• Need good
– RTT mean esimate (R)
– RTT variation esimate (b)

for retransmit timeout interval (rto)
• RFC793: use low pass filter

R = aR + (1-a)M, M – new measurement

• RFC813 suggests: rto = bR = 2R

RTT estimation, theory
• A := (1-g)A + gM, 0 < g < 1
after rearranging:
• A := A + g(M-A)

M-A = Er + Ee, where
Er (random error): due to noise in measurement

random kick, they will cancel out
Ee (estimation error): due to bad choice of A

kick in the right direction
• A := A + gEr + gEe, we want large g to get most

of Ee, but small g to reduce Er
• Usually take 0.1 ≤ g ≤ 0.2

RTT estimation, practice
• Goal: estimate variance of M
• σ2 = ∑ |M-A|2

– Squaring can cause overflow
– Use mean deviation instead
– mdev = ∑ | M – A |

• mdev2 = (∑ | M – A |) 2 ≤ ∑ | M – A |2 = σ2

• For normal distribution:
mdev = sqrt(π/2) sdev ≈ 1.25 sdev

RTT estimation, practice
• Err = M – A
• A := A + gErr
• D := D + g(|Err| - D)

• M -= (SA >> 3);
• SA += M;
• If (M < 0)

M = -M;
• M -= (SD >> 3);
• SD += M;

• g = 1/2n

• SA = 2nA
• SD = 2nD

RTT estimation, final
• Err = M – A
• A := A + gErr
• D := D + g(|Err| - D)

• rto := A + 2D

• M -= (SA >> 3)
• SA += M;
• If (M < 0)

M = -M;
• M -= (SD >> 2);
• SD += M;
• rto = ((SA >> 2) +SD)>>1

• gA = 1/23 SA = 23A
• gD = 1/22 SD = 22D

Analysis

Old TCP New mean + variance

y – time from send till reception of ack by sender

