Van Jacobson’s
Congestion Avoidance
and Control

presented by Leon Poutievski

Problem: Congestion

« Congestion
— Load exceeds the capacity of the network
— Overflow at router queues

 ATM: channel is reserved during the
connection setup

 |P: if queue is full, packets are dropped

——

Problem: Congestion

 Problem

— Wasted bandwidth (retransmission required)
— Unpredictable delay

* October 1986: first “congestion collapse”
— Caused by TCP retransmissions

¢ Scenario:
TCP sends a window's worth of data
Some of it gets lost; the rest sits in queue
Sender times out, retransmits everything

Result: Multiple copies of same data in queue!
(REPEAT)

Problem: Congestion

* Crux of the problem:

— When the router is congested (i.e. its queue is
full), retransmitting data all at once is exactly
the wrong thing to do

— But this is what TCP spec said to do
» Go-back-N protocol

— Send window is the only constraint on

sending rate

sending rate = send window . Extremely
important

RTT concept!

Problem: Congestion

Thus: send window controls how fast sender x-mits
Original TCP (flow control):
send window := rcv window

Conclusion: sender should also consider the
network capacity

ldea: reduce send window to reduce rate under
congestion

Solution: add congestion window
send window := min (rcv window, congestion window)

"Conservation of packets" principle

« Equilibrium = “stable,
full window of data in transit’

« “Conservative” packet flow
— New is not put into network until an old leaves

 Possible problems with packet conservation
1. Didn’t get to equilibrium
2. Sender ejects new packets before old has exited
3. Equilibrium can’t be reached

Getting to Equilibrium: Slow-start

« Self-clocking system
— Automatically adjusts to BW & delay variations
— Sender uses ACK as a ‘clock’

— Hard to start
N\ _rng /S
(=L

Sender Eeceiver

T N1
)TN

- A, - a

« Packet size (area) = BW x time

- Pr

Slow-start algorithm

* Add "congestion window" to algorithm
— send window := min (rcv window, cwnd);

* When starting (restarting)
cwnd := 1 packet;

« On ACK for new data
cwnd += 1 packet;

Slow-start, analysis

e OncRondTipTime — =

“Slow” is misnomer: .]
‘_C:,,-mpmnm

— rate grows exponentially

— On each ack 2 pkts are sent
« one for the packet acked (left n/w)

« one to increase the window R @ﬁ
So SWS doubles every RTT

IR] 5] Lii]

8 10 12 14

1R

9 11 13 15

It takes R log, W

 R:round trip time
« W: window size in packets

Slow-start, analysis

Piscioal S usincs Musiber 8)
20 a0 4 1] 1]

N
NN

Send Time fsec)

Without Slow-start

Mumber (KE)
100 120 140 180

Pacioal Sacuanca
ol &0 a0 80
I I I

Sand Time {sec)

With Slow-start

Conservation at Equilibrium
(round-trip timing)

* Need good estimate of
— RTT mean estimate

— RTT variation estimate
* It increases quickly with load

for retransmit timeout interval (rto)
(described later)

« Exponential backoff after retransmit
— Reasoning: linear systems

Congestion avoidance
(adapting to the path)

* Assumption:
— Losses are due to congestion
» Losses due damage are rare (<< 1%)
« Strategy

— If congestion, network must signal to
endpoints so that endpoints decrease
utilization

— If no congestion and thus no signals,
endpoints increase network utilization

Congestion avoidance

Multiplicative decrease
L=N+AL_,

L. — load at interval i, average queue length
N — constant
A = 0, no congestion

A > 1, congestion

— L, =A"L, , grows exponentially

System stabilizes only if traffic is reduced
as quickly as queues are growing

Congestion avoidance:

Multiplicative decrease
* On congestion: W.=dW,,(d<1)
- Taked=0.5, W.=W_,/2

— Motivation: give up 72 BW for a new
connection, everybody adapts to new situation

« Congestion detection
— Did not receive any ack (timeout)
— Received 3 duplicate acks

Congestion avoidance
Additive increase

* Also known as "Additive Increase,
Multiplicative Decrease" (AIMD)

— Refers to change in cwnd per RTT

* If no congestion detected:
Wi=Wii+tu (u<<Wiy)

Congestion avoidance
Algorithm

* On timeout:
cwnd = send window / 2; //multiplicative decrease

« On ack:
cwnd += 1 / cwnd; //additive increase

* send window := min (rcv window, cwnd);

Congestion avoidance, Analysis
(sequence numbers)

=

—

Sacuanca Nusber (KE)
J1} 400 0o 1a]

No congestion avoidance With congestion avoidance

Congestion avoidance, Analysis
(relative BW)

—— With congestion avoidance

No congestion avoidance

Rl e B ebwliih
1] 1.3 1

||||| '||I|I Ilr Ilj‘\vflll \
A \ / \ I'|
I .'f \ || ! III".U;'I I\
/ \ /
5 J/\/\/"‘»« nv/f\--xﬁ__.,-._){\ﬁ/
¥ ”

Total BW

Rl kv Bl b
] BT B -] 1 14
1 I I

I.I'n
!

f

) |I|I
'| l,r" II".,

1]

{
1
|

|| III Iln'rlll |II Illllll
IIIII |I|'II III|I IlI II|III In'lllllll IIIII II|I |II
||I| V "V"\H Il,n'll \ | I."III \J'II ||II||'
v I|||I

n

- L & o Lo
T e}

Delivered BW

Combined algorithm
(slow start + congestion avoidance)

cwnd = congestion window

ssthresh = threshold, to switch between
algs

send window = min (rcv window, cwnd);
On timeout;

ssthresh = send window / 2; //mult. decrease, cong. avoid.
cwnd = 1; //start slow start

On ack on new data:
If (cwnd < ssthresh)
cwnd += 1 //slow start
else
cwnd += 1/cwnd; //congestion avoidance

Conservation at Equilibrium

* Need good
— RTT mean esimate (R)
— RTT variation esimate (b)

for retransmit timeout interval (rto)

« RFC793: use low pass filter
R=aR + (1-a)M, M — new measurement

« RFC813 suggests: rto = bR = 2R

RTT estimation, theory

« A=(1-gA+gM,0<g<1
after rearranging:
« A:=A+g(M-A)
M-A = Er + Ee, where
Er (random error): due to noise in measurement
random kick, they will cancel out
Ee (estimation error): due to bad choice of A
Kick in the right direction
« A:=A+gEkr+ gEke, we want large g to get most
of Ee, but small g to reduce Er

* Usually take 0.1 =g =<0.2

RTT estimation, practice
Goal: estimate variance of M
0= |M-Al°
— Squaring can cause overflow
— Use mean deviation instead

—mdev=Y|M-A]

mdevZ= (> |[M-A])?<> | M-A|?=0?
For normal distribution:

mdev = sqrt(T1/2) sdev = 1.25 sdev

RTT estimation, practice

e Er=M-A « M -=(SA >>3);
« A=A+ gErr « SA +=M;

e D:=D+g(Err-D)| = If(M<O0)

M=-M;

e M-=(SD >> 3);
e SD +=M;

e g=1/2"
« SA=2"A
« SD=2"D

RTT estimation, final

Err=M-A ¢« M -=(SA >>3)
A:=A+gEr « SA +=M;
D :=D +g(|Err|-D)- If (M <0)
M = -M;
* M-=(SD >> 2);
* SD +=M,;
rto:=A+2D * rto = ((SA >> 2) +SD)>>1

« gy =1/2° SA=2A
* gp = 1/22 SD = 22D

AT (mea)
4 L} B

Analysis

y — time from send till reception of ack by sender

i ® -

RTT (wea)
[
—

Old TCP

|||||||||||
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

New mean + variance

|||||||||||
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

