Introduction to Switching/Forwarding/Routing CS 571 Fall 2006

© 2006 Kenneth L. Calvert All rights reserved

The Picture So Far

- We have seen how to transmit frames/packets between stations over a single channel
 - Point-to-point or shared medium (LAN)
 - Framing, error control, MAC functions
- Problem: single channels don't scale
 - Can't build an 802 network to cover all of Kentucky, much less the whole country
 - Why not? Speed of light limitations
 - Even as channel capacity grows without limit (frame xmit time \rightarrow 0)
 - As network covers longer distance, fraction of capacity wasted waiting for protocol information to propagate approaches 1
 - Polls or equivalent (token-passing)
 - Collisions
 - Note: power requirements, increase in offered load due to more stations are <u>not</u> the primary reasons!

The Solution

- Add <u>Store-and-forward nodes</u> to connect networks
 - Some stations are connected to multiple channels
 - They receive packets and <u>relay</u> them to other channels
 - Relay nodes are called Intermediate systems (ISs)

Store-and-Forward Networks

- The forwarding challenge:
 - Each IS needs to make a decision for each packet:
 Which channel to relay it to?
 - In general, there may be several choices of outgoing channel
 - Requirements: (i) packet arrives at its destination; (ii) packet doesn't go too far "out of the way"
- The Fundamental principle of forwarding:
 - Each packet must contain information the IS can use to make this decision

(Exception: random-walk routing: just forward the packet on any link. In a finite network, it arrives with probability 1.)

IS may also store state information to use in making the decision

Terminology: Switching vs. Forwarding

- These terms are sometimes used as synonyms
- <u>Switching</u> refers to the operation of connecting channels together to make a single channel
 - <u>Circuit switching:</u> relaying <u>signals</u>
 - Requires that all channels in network look (more or less) the same at the symbol level
 - Telephone network was originally circuit-switched
 - End-to-end delay is more-or-less fixed and predictable
 - Packet switching: relaying frames or packets
 - Allows different lower layers to be concatenated together
 - Introduces queueing delay
- <u>Forwarding</u> refers to relaying packets from one channel to another

(Note: no such thing as "circuit forwarding")

Parts of the Problem

- Three separable aspects:
 - 1. Determining what paths lead to each destination ("Path discovery")
 - 2. Choosing a path to each destination ("Path selection")
 - 3. Ensuring that each packet follows the chosen path ("Forwarding")
- How to identify destinations?

Different channels may use different addressing schemes

• Different approaches assign responsibility for these aspects to different parties

More Terminology

- So what is **<u>Routing</u>**?
- Refers to the path discovery and path selection parts of the problem (as opposed to forwarding)
- Typically, "routing" refers to the way the Internet Protocol solves the problem:
 - Global address space, tied to topology
 - IS's exchange information that enables them to determine the best path to each destination (More on this later)