
Routing Algorithms
CS 571

Fall 2006

© 2006 Kenneth L. Calvert
All rights reserved

Distributed Routing Algorithms

• Assumptions
– Network is modeled as a connected, undirected graph
– Nodes represent both destinations and relays

(No distinction between routers and hosts)

– Each node has a unique ID (natural number)
– Edges are communication channels (bidirectional)

• Edges may also have an associated "length" or "cost"
– d[i,j] = length of edge between i and j (∞ if no edge exists)

• Each node knows the lengths of its incident edges
• Each node knows the identity of nodes it is connected to

– Nodes may not communicate except via channels

Problem Statement

• At convergence, for every node i and j:
– Di[j] is the length of the shortest path from i to j
– hi[j] is the next hop on the shortest path from i to j

• Algorithm converges if channels are not broken

Bellman-Ford Algorithm

• Based on R. Bellman's well-known principle of
optimality, which in this context, says:

If the first step on the shortest path from i to j is k
then the rest is the shortest path from k to j

(Suppose not, i.e. there is some shorter path from k to j. Then
a shorter path from i to i to j exists, namely that first step
followed by that path!.)

i

k

j

Distributed Bellman-Ford Algorithm

• Initialize: For each i and j: Di[j] := d[i,j]
• At each i, iterate forever:

∀j: Di[j] = mink d[i,k] + Dk[j]

or:
for each j:

for each neighbor k:
if (d[i,k] + Dk[j] < Di[j])

{ hi[j] := k; Di[j] := d[i,k] + Dk[j] }

• Nodes exchange their Di[j] tables periodically
– Vector of distances ⇒ "Distance Vector" Algorithm

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: -
Distance: ∞

via B: ∞
via D: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via B: ∞
via E: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via D: ∞
via C: ∞

To C:
Next Hop: -
Distance: ∞

via C: ∞
via D: ∞

To C:
Next Hop: -
Distance: 0

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: -
Distance: ∞

via B: ∞
via D: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via B: ∞
via E: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via D: ∞
via C: ∞

To C:
Next Hop: -
Distance: ∞

via C: ∞
via D: ∞

To C:
Next Hop: -
Distance: 0

From: C
To: C
Dist: 0

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: -
Distance: ∞

via B: ∞
via D: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via B: ∞
via E: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via D: ∞
via C: ∞

To C:
Next Hop: -
Distance: ∞

via C: ∞
via D: ∞

To C:
Next Hop: -
Distance: 0

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: -
Distance: ∞

via B: ∞
via D: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via B: ∞
via E: ∞

To C:
Next Hop: C
Distance: 1

via A: ∞
via D: ∞
via C: 1

To C:
Next Hop: C
Distance: 2

via C: 2
via D: ∞

To C:
Next Hop: -
Distance: 0

From: B
To: C
Dist: 1

From: E
To: C
Dist: 2

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: B
Distance: 3

via B: 3
via D: ∞

To C:
Next Hop: -
Distance: ∞

via A: ∞
via B: ∞
via E: ∞

To C:
Next Hop: C
Distance: 1

via A: ∞
via D: ∞
via C: 1

To C:
Next Hop: C
Distance: 2

via C: 2
via D: ∞

To C:
Next Hop: -
Distance: 0

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: B
Distance: 3

via B: 3
via D: ∞

To C:
Next Hop: B
Distance: 2

via A: ∞
via B: 2
via E: 4

To C:
Next Hop: C
Distance: 1

via A: ∞
via D: ∞
via C: 1

To C:
Next Hop: C
Distance: 2

via C: 2
via D: ∞

To C:
Next Hop: -
Distance: 0

From: A
To: C
Dist: 3

From: D
To: C
Dist: 2

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: B
Distance: 3

via B: 3
via D: ∞

To C:
Next Hop: B
Distance: 2

via A: ∞
via B: 2
via E: 4

To C:
Next Hop: C
Distance: 1

via A: ∞
via D: ∞
via C: 1

To C:
Next Hop: C
Distance: 2

via C: 2
via D: ∞

To C:
Next Hop: -
Distance: 0

Simplified Bellman-Ford Example

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: B
Distance: 3

via B: 3
via D: 3

To C:
Next Hop: B
Distance: 2

via A: 4
via B: 2
via E: 4

To C:
Next Hop: C
Distance: 1

via A: 5
via D: 3
via C: 1

To C:
Next Hop: C
Distance: 2

via C: 2
via D: 4

To C:
Next Hop: -
Distance: 0

"Bad News Travels Slowly"

A

D E

C

B

1

2

1

2

2

1

To C:
Next Hop: B
Distance: 3

via B: 3
via D: 3

To C:
Next Hop: B
Distance: 2

via A: 4
via B: 2
via E: 4

To C:
Next Hop: C
Distance: 1

via A: 5
via D: 3
via C: 1

To C:
Next Hop: C
Distance: 2

via C: 2
via D: 4

To C:
Next Hop: -
Distance: 0

"Bad News Travels Slowly"

A

D E

C

B

1

2

1

2

2

To C:
Next Hop: B
Distance: 3

via B: 3
via D: 3

To C:
Next Hop: B
Distance: 2

via A: 4
via B: 2
via E: 4

To C:
Next Hop: D
Distance: 3

via A: 5
via D: 3
via C: ∞

To C:
Next Hop: C
Distance: 2

via C: 2
via D: 4

To C:
Next Hop: -
Distance: 0

From: B
To: C
Dist: 3

"Bad News Travels Slowly"

A

D E

C

B

1

2

1

2

2

To C:
Next Hop: D
Distance: 3

via B: 5
via D: 3

To C:
Next Hop: B
Distance: 4

via A: 4
via B: 4
via E: 4

To C:
Next Hop: D
Distance: 3

via A: 5
via D: 3
via C: ∞

To C:
Next Hop: C
Distance: 2

via C: 2
via D: 4

To C:
Next Hop: -
Distance: 0

From: D
To: C
Dist: 4

"Bad News Travels Slowly"

A

D E

C

B

1

2

1

2

2

To C:
Next Hop: D
Distance: 5

via B: 5
via D: 5

To C:
Next Hop: B
Distance: 4

via A: 4
via B: 4
via E: 4

To C:
Next Hop: D
Distance: 5

via A: 5
via D: 5
via C: ∞

To C:
Next Hop: C
Distance: 2

via C: 2
via D: 6

To C:
Next Hop: -
Distance: 0

From: B
To: C
Dist: 5

From: A
To: C
Dist: 5

"Bad News Travels Slowly"

A

D E

C

B

1

2

1

2

2

To C:
Next Hop: D
Distance: 5

via B: 7
via D: 5

To C:
Next Hop: E
Distance: 4

via A: 6
via B: 6
via E: 4

To C:
Next Hop: D
Distance: 5

via A: 7
via D: 5
via C: ∞

To C:
Next Hop: C
Distance: 2

via C: 2
via D: 6

To C:
Next Hop: -
Distance: 0

Distance-Vector Algorithms

• Advantage: Simple
• Disadvantage: Convergence time after

topology/cost change depends on graph & costs!
– May take a long time to detect changes & stabilize
– Especially when the network becomes disconnected

"Counting to Infinity" problem: Cost just keeps increasing
Meanwhile, packets loop!
• Partial solutions: "split horizon", "poison reverse" (see text)

• Disadvantage: Routing messages can be
expensive
– Dump entire forwarding table in each message!

Link-State Algorithms

• Basic Idea:
– Nodes exchange topology information

• Each announces the state of its attached links
• Link-state announcements

– Link-state announcements are broadcast throughout
the network

• Flooding mechanism implements a broadcast function
– Each node builds a graph model of the network

• Collects every other node's link-state announcements
– Each node runs Dijkstra's all-nodes shortest-path

algorithm on its graph
• Requirement: all nodes have the same graph model!

Flooding Mechansim

• Every node forwards every new flooded
message to all of its neighbors
– "New" = not already in the node's database

• Challenge: distinguishing new from old
– Solution: sequence numbers on LSAs

• But: What about wrapping sequence numbers?

• Challenge: lost messages
– Solution: acknowledge received flooded LSAs
– Each node retransmits until ack received on each link

Simplified Link-State Example

A

D E

C

B

1

2

1

2

2

1

A's Link-State DB
A-B 2 0
A-D 1 0

B's Link-State DB
A-B 2 0
B-C 1 0
B-D 1 0

C's Link-State DB
B-C 1 0
C-E 2 0

E's Link-State DB
C-E 2 0
D-E 2 0

D's Link-State DB
A-D 2 0
B-D 1 0
D-E 2 0

Source: A

Link to: B
Metric: 2
Seq #: 0

Link to: D
Metric: 1
Seq #: 0

Simplified Link-State Example

A

D E

C

B

1

2

1

2

2

1

A's Link-State DB
A-B 2 0
A-D 1 0

B's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0

E's Link-State DB
C-E 2 0
D-E 2 0

D's Link-State DB
A-B 2 0
A-D 1 0
B-D 1 0
D-E 2 0

C's Link-State DB
B-C 1 0
C-E 2 0

Simplified Link-State Example

A

D E

C

B

1

2

1

2

2

1

A's Link-State DB
A-B 2 0
A-D 1 0

C's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
C-E 2 0

E's Link-State DB
A-B 2 0
A-D 1 0
C-E 2 0
D-E 2 0

B's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0

D's Link-State DB
A-B 2 0
A-D 1 0
B-D 1 0
D-E 2 0

Simplified Link-State Example

A

D E

C

B

1

2

1

2

2

1

A's Link-State DB
A-B 2 0
A-D 1 0

C's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
C-E 2 0

E's Link-State DB
A-B 2 0
A-D 1 0
C-E 2 0
D-E 2 0

B's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0

D's Link-State DB
A-B 2 0
A-D 1 0
B-D 1 0
D-E 2 0

Source: D

Link to: B
Metric: 1
Seq #: 0

Link to:A
Metric: 1
Seq #: 0

Link to:E
Metric: 2
Seq #: 0

Simplified Link-State Example

A

D E

C

B

1

2

1

2

2

1

A's Link-State DB
A-B 2 0
A-D 1 0
B-D 1 0
D-E 2 0

C's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
C-E 2 0

E's Link-State DB
A-B 2 0
A-D 1 0
B-D 1 0
C-E 2 0
D-E 2 0

B's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0
D-E 2 0

D's Link-State DB
A-B 2 0
A-D 1 0
B-D 1 0
D-E 2 0

Simplified Link-State Example
...after B, C, & E flood their LSAs

A

D E

C

B

1

2

1

2

2

1

A's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0
C-E 2 0
D-E 2 0

C's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0
C-E 2 0
D-E 2 0

E's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0
C-E 2 0
D-E 2 0

B's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0
C-E 2 0
D-E 2 0

D's Link-State DB
A-B 2 0
A-D 1 0
B-C 1 0
B-D 1 0
C-E 2 0
D-E 2 0

Link-State Algorithms

• Advantages:
– Nodes send information about only their attached

links
– Fast convergence after change

• Disadvantages:
– Each node "knows" the whole topology!
– Dijkstra running time grows with topology
– Flooding consumes bandwidth

