
Internet Protocol (Version 4)
CS 571

Fall 2006

© 2006 Kenneth L. Calvert
All rights reserved

History

• Developed in late 1970's – early 1980's
– DARPA Internetworking Program

• Goal: create a "catenet" = network of networks
– LAN technologies were coming on the scene
– Several wide-area packet networks already existed

ARPANet, Tymnet, Telenet, DataPAC

– Needed: Common global address space

• IP Specification: RFC 791, September 1981
• "Flag Day" cutover to TCP/IP: January 1, 1981

– Note: Originally (late 70's) TCP and IP were one protocol

What IPv4 Provides

• Unified global, hierarchical address space
– 32-bit addresses

• depicted as "dotted quads": 128.113.23.44
• Datagram service: each packet forwarded independently

– Gateways (routers) can be "stateless" (not really)
– Requires little from underlying link layers

• "Best-effort" service
• Runs over everything

• Fragmentation and Reassembly
– Datagrams can be up to 64K bytes can be sent
– IP layer will

• Bounded Packet lifetime
– Packets will be dropped instead of delivered after long time

• Different Types of Service (never implemented)

IP Version 4 Header

Destination Address

Frag Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

32 bits

16 bits

IP Version 4 Header

Destination Address

Frag Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

Valid Version
Values: 4, 6

IP Version 4 Header

Destination Address

Frag Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

Offset of first
byte of data (in
32-bit words)

IP Version 4 Header

Destination Address

Frag Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum
16-bit total length:
up to 65,535 bytes
can be sent in one
datagram

IP Version 4 Header

Destination Address

Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

Time-to-Live: 8 bits
Original semantics:

seconds datagram
can remain in the
network (≤ 255)

Current semantics:
hop limit

IP Version 4 Header

Destination Address

Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

"Address" of
higher-level

protocol, e.g.:
6 = TCP

17 = UDP
4 = IPv4

(See IANA)

IP Version 4 Header

Destination Address

Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

16-bit 1's complement
of the 1's complement
sum of all 16-bit words
in the header

IP Version 4 Header

Destination Address

Frag Offset

ProtocolTTL

Version

Source Address

Identification

Header
Length

Type of
Service Total Length

Options
Fl

ag
s

Header Checksum

Fragmentation
Fields

Unique per (source,
dest, protocol) per
maximum segment
lifetime (MSL)

3 bits:
0: must be 0
1: Don't Fragment (DF)
2: More Fragments (MF)
MF=0 means "this fragment
contains the last byte of this
datagram"

13 bits: Offset of the first byte
of the payload of this fragment
from the beginning of the
original payload (units: 8 bytes)

Fragmentation Example

Offset: 0 ID: 35689 000

...

Header: 20 bytes
DG Len = 13007...

Payload: 12987 bytes

MTU = 4010 bytes

Fragmentation Example
MTU = 4010 bytes

Offset: 0 ID: 35689 001
...

DG Len = 4004...

bytes 0-3983

Offset: 498 ID: 35689 001
...

DG Len = 4004...

bytes 3984-7967

Offset: 996 ID: 35689 001
...

DG Len = 4004...

bytes 7968-11951

Offset: 1494 ID: 35689 000
...

DG Len = 1055...

bytes 11952-12986

Offset: 0 ID: 35689 000

...

DG Len = 13007...

Payload: 12987 bytes

Internet Addresses

• 32-bit addresses assigned to interfaces (not hosts)

Axiom: for each IP address there is an underlying link (or physical)
address

– IP provides network-to-network service
– The underlying link protocols provide host-to-host service

(Ethernet, PPP, WiFi, ... -- more on this later)

• Addresses are hierarchical and linked to network
topology
– Addresses assigned to interfaces "close" to each other in the

topology generally share a common prefix
– In fact, individual addresses are not assigned; prefixes are!

Hierarchical Addressing

128.163.0.0/16

128.160.0.0/16

128.155.20.0/22

128.161.0.0./16
128.162.0.0/16

10000000101000110000000000000000

128.160.0.0/14 = 10000000101000000000000000000000

128.163.3.4

128.162.1.1

Network Numbers

• In the old days, addresses were self-describing
– Boundary between network # and host # was

indicated by first two bits of address
• That turned out to be too limiting

– Not enough flexibility w.r.t. network size (cf.
"Goldilocks")

– Only two levels of hierarchy – inadequate
• Now the separation is indicated explicitly

– It takes a pair of numbers to specify a network
number: 204.198.76.0/24

Network number Prefix Length

Longest-Prefix Matching

• Recall that routers do longest-prefix matching
– To find most-specific forwarding table entry

• Each table entry has two parts:
– Prefix = bit string that defines the "network number"
– Mask = 1 bits indicate part of the prefix, 0's elsewhere

Prefix Mask
204.198.76.0 255.255.255.0
128.163.0.0 255.255.192.0
128.163.0.0 255.255.0.0

Longest-Prefix Matching

Boolean Match(IPAddr dest, IPAddr prefix, IPAddr mask)
{ return ((dest & mask) == prefix); }

11001100110001100100110000000000 11111111111111111111111100000000

10000000101000110000000000000000 11111111111111111100000000000000

10000000101000110000000000000000 11111111111111110000000000000000

dest addr = 128.163.13.1

10000000101000110000110100000001

10000000101000110000110100000000

Longest-Prefix Matching

Boolean Match(IPAddr dest, IPAddr prefix, IPAddr mask)
{ return ((dest & mask) == prefix); }

11001100110001100100110000000000 11111111111111111111111100000000

10000000101000110000000000000000 11111111111111111100000000000000

10000000101000110000000000000000 11111111111111110000000000000000

dest addr = 128.163.13.1

10000000101000110000110100000001

10000000101000110000000000000000
Match!

Where does my address come from?

• How do I get an IP address?
– From your Internet Service Provider (ISP)
– If you have a single machine, provider assigns you a single

address
– If you have a network, provider assigns a prefix (set of

addresses)
• E.g., network with 6 hosts: get a /29
• Host #'s 0...0 and 1...1 are reserved ("any", broadcast)

• How does my provider get an address?
– From a Registrar (ARIN, APNIC, RIPE, ...)
– Provider must "make the case" to get address space
– IPv4 address space is more than 50% used

Private Address Space

• Some prefixes are set aside for networks not
connected to the "capital I" Internet
– 192.168.0.0/16
– 172.16.0.0/12
– 10.0.0.0/8

• This address space is often used behind Network
Address Translation (NAT) boxes
– Such boxes make it possible for many devices on the

private side of the NAT box to "masquerade" as a
single IP address on the public side

IP-in-IP Tunneling Example

Internet

192.168.1.52

192.168.100.3

192.168.37.1

192.168.127.1
65.7.22.5

150.37.2.5

IP-in-IP Tunneling Example

Internet

192.168.1.52

192.168.100.3

Dest=192.168.100.3

Source=192.168.1.52

Protocol=TCP

IP-in-IP Tunneling Example

Internet

192.168.1.52

192.168.100.3

Dest=150.37.2.5

Source=65.7.22.5

Protocol=IPv4

65.7.22.5 150.37.2.5

IP-in-IP Tunneling Example

Internet

192.168.1.52

192.168.100.3

150.37.2.565.7.22.5

IP-in-IP Tunneling Example

Internet

192.168.1.52

192.168.100.3

65.7.22.5 150.37.2.5

Mapping IP to Lower-level

• Routing protocols (therefore forwarding tables)
identify next-hop with an IP address

• This address must be mapped to a lower-level
address in order to actually forward a datagram!

• For point-to-point channels, this mapping may
be statically configured
– Lower-level address doesn't matter much

• After all, there's only one "other end"!

• For shared channels like Ethernet, it is a big deal

Address Resolution Protocol

• ARP (RFC 826) designed to solve the problem of
mapping IP addresses to lower-level address
over broadcast channels

• Station that needs to resolve an IP address
broadcasts "ARP Request" for the address

• Each station listens for such requests, responds
with a message containing its "hardware"
address when it hears its own IP address

ARP Packet Format

Target H/W Addr

Source H/W Addr Source Protocol Addr

Source H/W Address

OpcodeH/W/Len

Hardware Type Protocol Type

Protocol Len

Source Protocol Addr

Target H/W Address

Target Protocol Addr

Ether Dest Ether Src Ethertype
0x0806=ARP ARP Message

Example Ethernet Frame

CRC

ARP Operation

IP: 128.163.140.119
H/W: 00:12:3F:74:6D:08

IP: 128.163.140.43
H/W: 00:13:C4:80:93:3E

IP: 128.163.140.1
H/W: 00:30:96:33:C9:A0

IP: 128.163.140.44
H/W: 00:E0:18:F7:60:CC

Ozark
Yosemite

Magneto
Escalade

ARP Request
Src HW = 00:12:3F:74:6d:08

Src IP = 128.163.14.119
Target HW = 00:00:00:00:00:00

Target IP = 128.163.140.1

Ozark's Cache
128.163.140.43 → 00:13:C4:80:93:3E

ARP Operation

IP: 128.163.140.119
H/W: 00:12:3F:74:6D:08

IP: 128.163.140.43
H/W: 00:13:C4:80:93:3E

IP: 128.163.140.1
H/W: 00:30:96:33:C9:A0

IP: 128.163.140.44
H/W: 00:E0:18:F7:60:CC

Ozark
Yosemite

Magneto
Escalade

ARP Response
Src HW = 00:30:96:33:C9:A0

Src IP = 128.163.140.1
Target HW = 00:12:3F:74:6d:08

Target IP = 128.163.14.119

Ozark's Cache
128.163.140.43 → 00:13:C4:80:93:3E

ARP Operation

IP: 128.163.140.119
H/W: 00:12:3F:74:6D:08

IP: 128.163.140.43
H/W: 00:13:C4:80:93:3E

IP: 128.163.140.1
H/W: 00:30:96:33:C9:A0

IP: 128.163.140.44
H/W: 00:E0:18:F7:60:CC

Ozark
Yosemite

Magneto
Escalade

Ozark's Cache
128.163.140.43 → 00:13:C4:80:93:3E
128.163.140.1 → 00:30:96:33:C9:A0

IP Operation

IP: x.3
Ethernet: a

IP: x.1
Ethernet: b

IP: y.1
Ethernet: c

IP: y.5
Ethernet: d

1. x.3 Looks up y.5 in forwarding table, finds next hop is x.1

2. x.3 resolves x.1 to Ethernet address b

3. x.3 transmits datagram as payload of Ethernet frame from a to b

To: y.5
From: x.3

To: y.5
From: x.3

To: b
From: a

IP Operation

IP: x.3
Ethernet: a

IP: x.1
Ethernet: b

IP: y.1
Ethernet: c

IP: y.5
Ethernet: d

To: y.5
From: x.3

4. Router receives Ethernet frame, strips header, passes payload to IP

5. Router looks up y.5 in fwding table, finds next hop = y.5

6. Router resolves y.5 to Ethernet address d

7. Router transmits datagram as payload of Ethernet frame from c to d

To: y.5
From: x.3

To: d
From: c

IP Operation

IP: x.3
Ethernet: a

IP: x.1
Ethernet: b

IP: y.1
Ethernet: c

IP: y.5
Ethernet: d

To: y.5
From: x.3

8. y.5 receives frame, strips header, passes to IP

