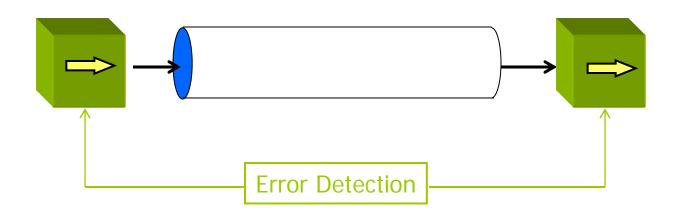
Error Detection and Correction

CS 571 Fall 2006

© 2006 Kenneth L. Calvert

The Problem

- Given a <u>frame channel</u> that may deliver frames with corrupted symbols (flipped bits)
- How do we determine
 - Whether a received frame was corrupted in transit?
 - If so, what was the original transmitted frame?
- So: design protocol boxes to detect corruption



The Solution

The Fundamental Paradigm of Error Detection:

- Sender and Receiver agree (in advance) that all transmitted frames shall have a particular property
- Sender converts every data frame to one having the property before transmitting
- Receiver discards any received frame that does not have the property
- What's left to do?
 - Come up with a suitable property!

When thinking about error detection mechanisms, ask yourself: What is the <u>property</u>?

The Solution

Characteristics of a "good" property:

- Easy to convert an arbitrary frame to one with the property
 - Generally do this by adding some specially-chosen bits to the frame
- Easy to check whether a frame has the property
 - Do we expect this to be implemented in hardware? software?
- Errors are <u>unlikely</u> to preserve the property

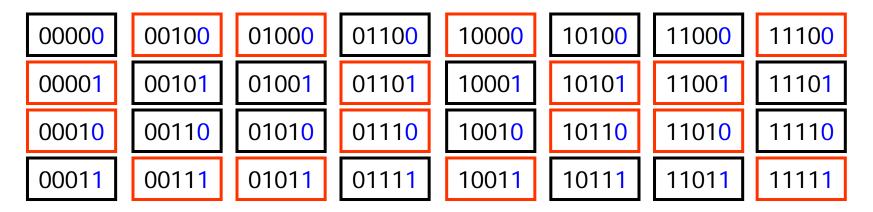
Observation:

- The last characteristic depends entirely on
 - The fraction of all possible frames that have the property
 - The distribution of errors (i.e. likely received frames)

Example: Parity

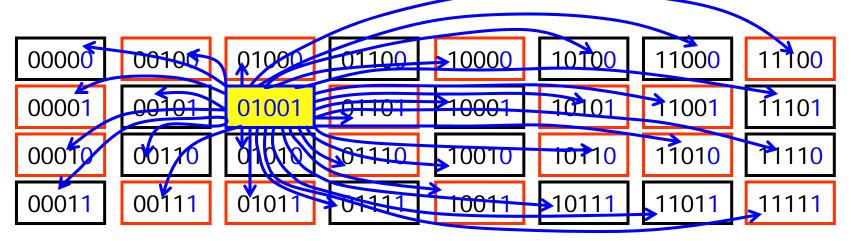
- Property: transmitted frames all <u>contain an even</u> <u>number of 1's</u>
 - Receiver discards frames with an odd number of 1's
- Is this a good property?
 - ✓ Easy to make a frame have it (add one bit)
 - ✓ Easy to check if frame has it (simple FSM)
 - o Errors unlikely to preserve the property?
 - We can't say without some knowledge of error probabilities!

- Until further notice: assume <u>fixed frame sizes</u>
- Consider a channel that transmits 5-bit frames
 - Use 4 as data bits, one as parity
- There are 32 possible 5-bit frames:



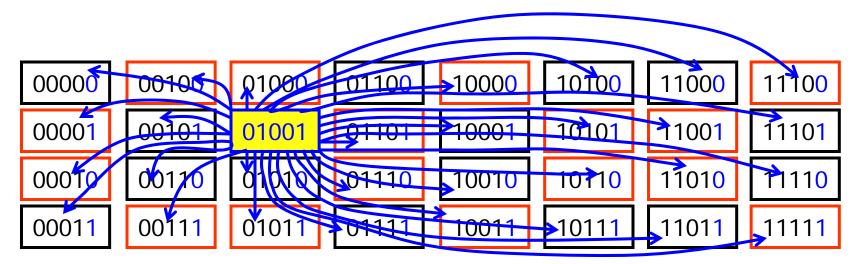
Half have incorrect parity, and will never be sent

- Assume that <u>any error is equally likely</u>, given than an error occurs
 - That is, a frame emerges unchanged with some probability p, while with probability 1-p it is changed into some other frame



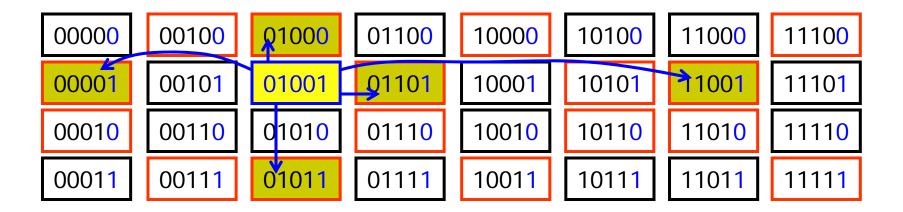
- Of the possible received corrupted frames:
 - 15 have correct parity
 - 16 have incorrect parity

- The probability that an error is detected (given than one occurs) is just 0.5!
- Not a very good detector



- Of the possible received corrupted frames:
 - 15 have correct parity
 - 16 have incorrect parity

 On the other hand, if <u>single-bit errors</u> are much more likely than others, it <u>is</u> a good detector!



Hamming Distance

- Given two n-bit frames ("words") w and w'
- Hamming Distance HD(w,w') between them is
 - the number of bit positions in which they differ, or
 - the number of ones in their bitwise-sum (mod 2)

• Examples:

```
HD(1001,0101) = 2

HD(101,010) = 3

HD(100,000) = 1
```

Error Distribution Models

- For most real channels, the probability of an error transforming a transmitted frame w into a received frame w' decreases with increasing HD(w,w')
- This is true for <u>Binary Symmetric Channels</u>:
 - Each bit is corrupted with fixed probability p
 - Typically p << 1/2
 - Errors are independent:
 - If one bit is corrupted, the probability of bits before/after it does not change
 - Probability k (of n) bits corrupted = $C(n,k)p^k(1-p)^{n-k}$

Error Distribution Models

- Binary Symmetric Channel often does not model real channels adequately
- In real channels, errors tend to occur in <u>bursts</u>
 - The probability of a bit being corrupted increases if other bits "near" it are corrupted
 - That is, errors are not independent
- For these channels, the important characteristic is the <u>burst length distribution</u>
 - That is, the probability of a burst error of length k, for k=1, 2, ...
- For most channels, longer bursts are less likely

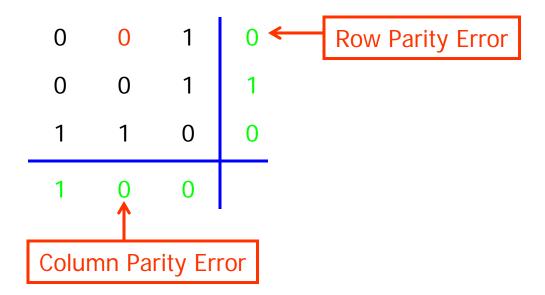
More Sophisticated Parity Codes

- Idea: arrange data bits in a square array
- Add a parity bit for each row and column
 - Each data bit is "protected" by two parity bits

d_0	d_1	d_2	r ₃	0	1	1	0
d_3	d_4	d_5	r ₄	0	0	1	1
		d_8		1	1	0	0
r_0	r ₁	r ₂		1	0	0	

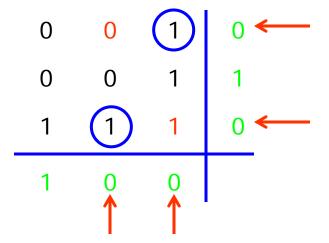
More Sophisticated Parity Codes

- This code can detect <u>and correct</u> all one-bit errors
 - Row and column parity errors point to the corrupted <u>data</u> bit
 - If a parity bit is corrupted, other parity bits are OK
 - Note implicit assumption: single-bit error is most likely!



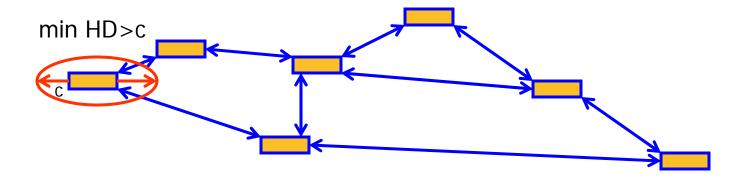
More Sophisticated Parity Codes

- This code can <u>detect</u> all two-bit errors
- Can't <u>correct</u>, due to ambiguity



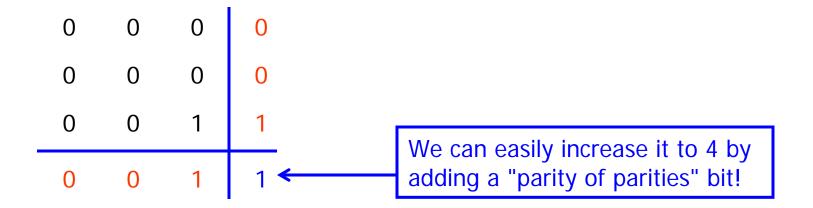
General Result: Error detection capabilities

- Code: subset of {0,1}ⁿ (binary strings of length n)
- If minimum Hamming Distance between two <u>code words</u> exceeds d, the code can <u>detect</u> up to d errors
 - More errors required to transform one word into another



General Result: Error detection capabilities

- Theorem: For codes based on even parity, the minimum distance between two code words is equal to the <u>minimum weight</u> of a nonzero code word
 - Weight of a code word = # 1's in the word
- For row-column parity: min weight = 3



Checksums

- Property: when the frame is viewed as a sequence of (fixed-size) words, the <u>sum</u> of those words is some predetermined value
 - Different kinds of arithmetic may be used!
- Good property?
 - Easy to establish: just add a word
 - Easy to check: add up the words of the received frame
 - Unlikely to be preserved?
 - As always, depends on the error distribution

The "Internet Checksum"

- Checksum used in IP, TCP and UDP
- Designed to be easily implementable in software

Cyclic Redundancy Check (CRC)

- Used in many modern datalink protocols
- Excellent error detection capabilities
 - An r-bit CRC can detect all but 1/2^r error patterns
 - Assumption: bursts are limited in length
 - Example: CRC-16
 - Detects all error bursts up to 16 bits in length
 - Detects all errors with odd weight
 - Detects all but 1/2¹⁶ of bursts longer than 16 bits

CRC: Background

- Basic concept: Strings of bits viewed as <u>polynomials</u> over the finite field F₂
 - Each coefficient is either 0 or 1
 - Example: 101101 corresponds to $x^5 + x^3 + x^2 + 1$
 - k-bit string corresponds to a polynomial of degree k-1
 - Addition of polynomials: modulo-2 addition of coefficients of like terms
 - Subtraction: same as addition
 - Example: $101101 \leftrightarrow x^5 + x^3 + x^2 + 1$ + $1001001 \leftrightarrow x^6 + x^3 + 1$ = $1100100 \leftrightarrow x^6 + x^5 + x^2 + 1$
 - Multiplication as in normal algebra
 - Example: $(x^3 + x^2 + 1)(x^2 + 1) = x^5 + x^4 + x^3 + 1$

CRC: How It Works

- Sender and Receiver agree in advance on a Generator Polynomial G(x) of degree r
- The Property: <u>divisibility by G(x)</u>
 - Every transmitted frame, when viewed as a polynomial T(x), is a multiple of the polynomial G(x)
 - Receiver divides every received frame by G(x), discards any that have nonzero remainder
- Easily implemented in hardware using shift regs
- Easy to make any frame (of any length!) correspond to a multiple of G(x)

CRC: Sender Procedure

To transmit W(x):

- Multiply W(x) by x^r
 This shifts it left r bits, adding 0's on the right
- 2. Divide $W(x)x^r$ by G(x). Let remainder = R(x) The degree of R(x) is less than r
- Transmit T(X) = W(x)x^r + R(x)
 Because addition = subtraction, T(x) has remainder 0 when divided by G(x)

Sender Procedure Example

Assume $G(x) = 1101 \leftrightarrow x^3 + x^2 + 1$ To transmit W(x) = 111010:

- 1. Multiply by x^r to get 111010000
- 2. Divide $W(x)x^r$ by G(x) ignore quotient!

3. Transmit $W(x)x^r + R(x) = 111010010$

CRC: Receiver Procedure

- Received frame = D(x)
- Divide D(x) by G(x)
- If remainder = 0, accept; else discard
- Example: D(x) = 111010010

```
1101)111010010

1101

1101

1101

1101

00 

Remainder = 0 \Rightarrow accept!
```

CRC: Why Is This a Good Property?

- Under what conditions is the property "divisibility by G(x)" preserved?
- View the channel as adding an error polynomial E(x) to the transmitted frame T(x)
 - Received frame D(x) = T(x) + E(x)
 - D(x) is divisible by G(x) iff E(x) is!
- Choose G(x) unlikely to be divisible by E(x)
 - Example: G(x) has a constant term \Rightarrow catch single-bit errors
 - Given some knowledge of error distribution, can design G(x) to catch all errors shorter than some burst length
 - Typically less than 2^{-r} of all possible errors go undetected