
Devices and the
Hardware/Software Interface

CS 571
Fall 2006

© 2006 Kenneth L. Calvert

What Network Hardware Does

• Transmit:
– Add framing information

– Serialize data from memory

– Gain access to channel via MAC Protocol (if applicable)

– Modulate signal to transmit symbols per physical protocol

– Implement Error Detection protocol (if applicable)

– Inform software (via interrupt) when transmission is complete

• Receive:
– Derive symbols from physical signal

– Recognize station address (if applicable)

– Strip framing, de-serialize into memory

– Perform error-detection checks (if applicable), signaling errors

– Inform software (via interrupt) when frame is received

Background: Threads of Control

• At any time, the CPU is executing instructions of at most one
thread of control

– Part of a: user program, OS, or device driver,

• When an interrupt occurs, CPU begins executing instructions of a
special thread
– Interrupt-handling routine of device driver

current program
thread

Program Counter

interrupt-handling
routine

Interrupt Stack

Background: Threads of Control

• At any time, the CPU is executing instructions of at most one
thread of control

– Part of a: user program, OS, or device driver,

• When an interrupt occurs, CPU begins executing instructions of a
special thread
– Interrupt-handling routine of device driver

Program Counter

interrupt-handling
routine

Interrupt Stack

current program
thread

Background: Threads of Control

• At any time, the CPU is executing instructions of at most one
thread of control

– Part of a: user program, OS, or device driver,

• When an interrupt occurs, CPU begins executing instructions of a
special thread
– Interrupt-handling routine of device driver

• Code may be anywhere

• Pointer to code ("interrupt vector") is stored in a low memory location
associated with that device

– Hardware automatically...
1. Saves current state (on the interrupt stack)

2. Begins loading instructions from that location

...when that device raises an interrupt

• Devices may have different interrupts for receiving and
transmitting

What Software Does

• Inform hardware of buffer (memory) locations
– Where incoming frames should be placed
– Where frames to be transmitted are located
– Buffer descriptors: pointers to memory areas for hardware use
– For small frames (e.g. single characters), data is passed directly

via data registers

• Inform hardware when buffers are ready to use
– Receive buffers: empty
– Transmit buffers: full, ready to send
– Implemented by setting/clearing a bit in the buffer descriptor

• Add addressing information if applicable
– E.g. Ethernet

• Deal with any errors signaled by device
– E.g. framing errors, checksum errors

How Do S/W & H/W Communicate?

• Through device registers
– Special memory locations

– Readable/writable by (privileged) software

• H/W → S/W: Registers indicate:
– When a buffer is ready for s/w to service (by setting a bit)

• Why isn't just interrupting sufficient?

– When an error has occurred

– Device status (ready, synchronizing, ...)

• S/W → H/W: Registers control:
– Where buffers are

– Device configuration

• E.g. for async: # bits/frame, # stop bits

– When a buffer is ready for h/w to service (by setting a bit)

Example Hardware Interface

Memory

Rcv Buffer Descriptor Table Pointer

Location Frame Len E
m
p
ty

0

0

1

1

Receive Buffer
Descriptor Table0

Receiver Config/Status Register

1518

786

0
0

0

0

1

0

W
ra
p

F
ra
m
e
rr

In
tr
p
t
E
n

0

0

0

0

1

1

1

1

C
o
lli
si
o
n

0

0

0

0

414

Rcv Buf Len Preamble

2048 0x5E

R
cv
 E
n
a
b
le

T
x
 E
n
a
b
le

P
ro
m
isc

L
o
o
p
b
a
ck

0 0 1 1

T
x
 U
n
d
e
rflw

R
cv
 O

v
rru

n

R
e
rtry

 C
n
t

0 0 000

Example Ethernet Config/Status Register

Receive
Buffer
Length

Start
Frame

Delimiter

R
e
ce
iv
e
r E

n
a
b
le

T
ra
n
sm

itte
r E

n
a
b
le

P
ro
m
iscu

o
u
s M

o
d
e

L
o
o
p
b
a
ck
 M

o
d
e

T
ra
n
sm

it U
n
d
e
rru

n

R
e
ce
iv
e
 O

v
e
rru

n

R
e
rtry

 C
o
u
n
t

0x800 0x5D 0 0 1 10 0 000

Bits 01234-6789-1617-32

Software Bit-Diddling

• Accessing registers:

– Set a pointer (to the appropriate word size) to the
(fixed!) address of the register

• This only works in the kernel!

• Can be troublesome if the device control register addresses
are not fixed! (Pre-Plug-n-Play PC devices)

– Read/write indirectly via the pointer

#define ETHER_MCSR 0xfff78420

unsigned int regValue, *csr;

csr = ETHER_MCSR;

regValue = *csr;

Software Bit-Diddling

• Setting individual bits:
– Get the current value

– OR in the desired bit

– E.g., to turn on Loopback mode (bit 3):
#define LOOPBACK_FLAG 0x8 // or (1<<3)

*csr |= LOOPBACK_FLAG;

• Clearing individual bits:
– Get the current value

– AND with the complement of the desired bit

– To turn off Loopback mode:

*csr &= ~LOOPBACK_FLAG;

Software Bit-Diddling

• Complementing individual bits
– XOR with the desired bit

*csr ^= LOOPBACK_FLAG; // invert the flag!

• Reading groups of bits as a number:
– AND the register value with the desired bits

– Shift to proper magnitude

– E.g., to check number of retries (bits 4-6):

#define RETRYCOUNT_SHIFT 4

#define RETRYCOUNT_MASK 0x70

numRetries = *csr & RETRYCOUNT_MASK;

numRetries >>= RETRYCOUNT_SHIFT;

Anatomy of a Packet Transmission

Assumptions:
– User-space C program

using TCP via "sockets"
interface

– Sending a 500-byte
message

– Machine connected to an
Ethernet

– Modern Operating System

– No prior messages sent

• N.B. This is generic and
greatly simplified!

Application

socket interface

TCP

IPv4

Ethernet Device

Hardware

C library u
se
r
sp

a
ce

k
e
rn
e
l

Anatomy of a Packet Transmission

1. Application calls
"send(sock#, bufPtr, 500)"

• Run-time C library
implementation of send()
pushes arguments on stack

• Implementation executes a
"system call trap" instr.

• Address of kernel trap svcing
routine loaded into PC

• Processor changes to
privileged mode

Application

socket interface

TCP

IPv4

Ethernet Device

Hardware

send(...) u
se
r
sp

a
ce

k
e
rn
e
l

trap

data

Anatomy of a Packet Transmission

2. Trap handler invokes kernel
implementation of send()
system call
• Validates arguments (e.g.,

pointer is in the proc's address
space)

• Copies user data into kernel
address space, adds buffer
header

• Locates the state data structure
for the socket

• Verify the socket state is OK to
transmit

• Appends the data to the socket's
send queue (assumed empty)

Application

sysnd(...)

TCP

IPv4

Ethernet Device

Hardware

send(...) u
se
r
sp

a
ce

k
e
rn
e
l

data

copy

queue

Anatomy of a Packet Transmission

3. System call invokes
(indirectly) socket's
sk_send function
• Invokes TCP "send_data()"

function, which:
• Retrieves the relevant TCP

state info

• Checks whether it is possible
to send anything (flow ctl)

• Constructs 20-byte TCP
header, prepends to message

• TCP send_data invokes
"ip_output()" with packet

Application

*sk_snd(..)

send_data(..)

IPv4

Ethernet Device

Hardware

send(...) u
se
r
sp

a
ce

k
e
rn
e
l

data

queue

Anatomy of a Packet Transmission

4. ip_output(...)

• Gets destination IP address from
TCP state data structure (layering

violation)

• Looks up that address in
forwarding table to get a route

(= logical interface + next hop IP
address)

• Prepends 20-byte IP header to
TCP packet

• Invokes the interface's output
routine, bound to Eth_output()

Application

*sk_snd(..)

send_data(..)

ip_output(..)

Ethernet Device

Hardware

send(...) u
se
r
sp

a
ce

k
e
rn
e
l

data

Anatomy of a Packet Transmission

4. Eth_output(...)
• Resolves next-hop IP

address to Ethernet address
via ARP (may queue)

• Prepend 14-byte Ethernet
header (incl. dest addr)

• If there is an available
TxBufDescriptor, make it
point to packet data

• If necessary, start the
hardware device

• Free the kernel buffer hdr

Application

*sk_snd(..)

send_data(..)

ip_output(..)

Eth_output(..)

Hardware

send(...) u
se
r
sp

a
ce

k
e
rn
e
l

data

TxBD

Anatomy of a Packet Transmission

5. Control returns up the
stack

• Success indication returned
to application program

6. Hardware eventually
transmits packet per
Ethernet protocol

Application

*sk_snd(..)

send_data(..)

ip_output(..)

Eth_output(..)

Hardware

send(...) u
se
r
sp

a
ce

k
e
rn
e
l

data

TxBD

Packet Transmission: Highlights

• Message queued in at least two places:
– Socket transmit queue

• May wait if socket is flow-controlled at transport level

– (Maybe) ARP queue
• Waiting for reply from target

– Device output queue
• May wait if channel is busy

• Packet processing happens in single thread of
control all the way to device driver

• When send() returns, message may or may not
have been transmitted

Anatomy of a Packet Reception

1. Hardware recognizes
frame addressed to this
station

• Places packet into
memory per next free
RxBD

• Hardware generates
device interrupt

Application

socket interface

TCP

IPv4

Ethernet Device

Hardware

C library u
se
r
sp

a
ce

k
e
rn
e
l

RxBD

Intrpt

Anatomy of a Packet Reception

2. Current thread is interrupted;
Ethernet interrupt service routine
runs

• Checks device status for errors

• Verifies dest. address matches
device address

• Allocates kernel buffer hdr for packet
data

• Determines next protocol (IP)

• Strips Ethernet header

• Places buffer header in that
protocol's input queue

• Make RxBD point to a fresh buffer

• Schedule the kernel net service
thread to run

• Return from interrupt; scheduler
runs highest priority thread

Application

socket interface

TCP

IPv4

eth_intrpt(..)

Hardware

C library u
se
r
sp

a
ce

k
e
rn
e
l

RxBD

Intrpt

IP
queue

Anatomy of a Packet Reception

3. Net service thread detects
nonempty queue, calls
ip_input(), which:

• Dequeues packet

• Sanity-checks IP header

• Checks that packet's destination IP
address = one of this device's
addresses

• Determines next-higher protocol

• Invokes that protocol's input
routine indirectly via "switch table"

In this case, the actual routine is
tcp_input()

Application

socket interface

TCP

ip_input()

Ethernet

Hardware

C library u
se
r
sp

a
ce

k
e
rn
e
l

IP
queue

Anatomy of a Packet Reception

4. tcp_input()
• Retrieves relevant protocol state,

using both IP and TCP headers
• Determines if data is acceptable

per TCP sliding window protocol
• If so:

• Strips IP + TCP headers by
advancing buffer pointer

• Retrieves associated socket state
• Places packet payload in socket

receive queue
• If any application process is

blocked on the queue, make it
runnable

• Returns

5. Net service thread blocks if no
packet in net-level (IP) queue

Application

socket interface

tcp_input()

ip_input()

Ethernet

Hardware

C library u
se
r
sp

a
ce

k
e
rn
e
l

socket
queue

IP
queue

Anatomy of a Packet Reception

6. Application calls "recv(sock#,
buffer, 1000")

• Run-time C library implementation
of recv() pushes arguments on
stack

• Implementation executes a
"system call trap" instr.

• Address of kernel trap svcing
routine loaded into PC

• Processor changes to privileged
mode

Note: this step may happen before
previous steps

Application

socket interface

tcp_input()

ip_input()

Ethernet

Hardware

recv(...) u
se
r
sp

a
ce

k
e
rn
e
l

trap

buffer

Anatomy of a Packet Reception

7. Trap handler invokes kernel
implementation of recv()
system call
• Validates arguments (e.g., pointer

is in the proc's address space)

• Invokes socket's recv() function

• Locates the state data structure
for the socket

• Verifies the socket state is OK to
receive

• If there is data in the socket queue

• Copy it into the user's buffer; free
kernel buffer header

• Return

• Else block until data arrives

Application

sk_rcv()

tcp_input()

ip_input()

Ethernet

Hardware

recv(...) u
se
r
sp

a
ce

k
e
rn
e
l

socket
queue

trap

buffer

Anatomy of a Packet Reception

7. Trap handler invokes kernel
implementation of recv()
system call
• Validates arguments (e.g., pointer

is in the proc's address space)

• Invokes socket's recv() function

• Locates the state data structure
for the socket

• Verifies the socket state is OK to
receive

• If there is data in the socket queue

• Copy it into the user's buffer; free
kernel buffer header and buffer

• Return

• Else block until data arrives

Application

sk_rcv()

tcp_input()

ip_input()

Ethernet

Hardware

recv(...) u
se
r
sp

a
ce

k
e
rn
e
l

socket
queue

trap

buffer

Packet Reception Highlights

• Control flows from the bottom up
• Three different threads of control

– Hardware interrupt
• Must run very fast because it blocks everything else

– High-priority "network service" thread
• Processes data via function calls upward through stack

– User program

• Data must queue somewhere between hardware and
user program
– There exists an "Asynchronous-synchronous" interface

• In this example, there are two queues
– IP input
– User input
(What happens when these queues get full?)

Packet Reception Highlights

• Some protocol layers have to determine which
next-higher layer to invoke by looking at their
own header information

– Examples: Ethernet, IP

• Typically this is done indirectly, via a table of
protocol functions

– Header field value used as index into protocol table

