Devices and the

Hardware/Software Interface
CS 571
Fall 2006

© 2006 Kenneth L. Calvert

What Network Hardware Does

e Transmit:
— Add framing information
— Serialize data from memory
— Gain access to channel via MAC Protocol (if applicable)
— Modulate signal to transmit symbols per physical protocol
— Implement Error Detection protocol (if applicable)
— Inform software (via interrupt) when transmission is complete

e Receive:
— Derive symbols from physical signal
— Recognize station address (if applicable)
— Strip framing, de-serialize into memory
— Perform error-detection checks (if applicable), signaling errors
— Inform software (via interrupt) when frame is received

Background: Threads of Control

e At any time, the CPU is executing instructions of at most one
thread of control

— Part of a: user program, OS, or device driver,

e When an interrupt occurs, CPU begins executing instructions of a
special thread

— Interrupt-handling routine of device driver

current program interrupt-handling
thread routine
=
[—
T~
Program Counter \ .

Interrupt Stack

Background: Threads of Control

e At any time, the CPU is executing instructions of at most one
thread of control

— Part of a: user program, OS, or device driver,

e When an interrupt occurs, CPU begins executing instructions of a
special thread

— Interrupt-handling routine of device driver

current program interrupt-handling
thread routine

[—
Program Counter

Interrupt Stack

Background: Threads of Control

At any time, the CPU is executing instructions of at most one
thread of control

— Part of a: user program, OS, or device driver,

When an interrupt occurs, CPU begins executing instructions of a
special thread
— Interrupt-handling routine of device driver

e Code may be anywhere

e Pointer to code ("interrupt vector") is stored in a low memory location
associated with that device

— Hardware automatically...
1. Saves current state (on the interrupt stack)
2. Begins loading instructions from that location

...when that device raises an interrupt

Devices may have different interrupts for receiving and
transmitting

What Software Does

Inform hardware of buffer (memory) locations

— Where incoming frames should be placed

— Where frames to be transmitted are located

— Buffer descriptors: pointers to memory areas for hardware use

— For small frames (e.g. single characters), data is passed directly
via data registers

Inform hardware when buffers are ready to use

— Receive buffers: empty

— Transmit buffers: full, ready to send

— Implemented by setting/clearing a bit in the buffer descriptor

Add addressing information if applicable
— E.g. Ethernet

Deal with any errors signaled by device
— E.g. framing errors, checksum errors

How Do S/W & H/W Communicate?

e Through device registers
— Special memory locations
— Readable/writable by (privileged) software

e H/W — S/W: Registers indicate:
— When a buffer is ready for s/w to service (by setting a bit)
e Why isn't just interrupting sufficient?
— When an error has occurred
— Device status (ready, synchronizing, ...)

e S/W — H/W: Registers control:

— Where buffers are

— Device configuration
e E.g. for async: # bits/frame, # stop bits

— When a buffer is ready for h/w to service (by setting a bit)

Example Hardware Interface

2048 x5 000000011
Rcv Buf Len Preamble < 8 & § 3 % &
S o 2 8304
a < = £ % = 3
T2 2 2°g2¢&
Memory =
°® Rc ffer Descriptor Table Pointer
I Receiver Config/Status Register
| 22258
y Location Framelen £35E:z§
! ® 1518 ojoj1]o]o
° 786 ofof1]o]o Receive Buffer
d 414 ojoj1]ojo Descriptor Table
® 0 ojoj1]1]1

Example Ethernet Config/Status Register

Bits 17-32 9-16 8 7 46 3 210
0x800 | Ox5D 0/0 00000 11
Receive Start I 47 » 533 »
Buffer ~ Frame 3 8 = $35 3 3
Length Delimiter 2 5 = 8% 3

“ o § 25 F =
S 5 S =c @O

) =3 -3
3 = 9% mo
@ c Q=25 O
3 3 o 9 o

Software Bit-Diddling

e Accessing registers:

— Set a pointer (to the appropriate word size) to the
(fixed!) address of the register
e This only works in the kernel!

e Can be troublesome if the device control register addresses
are not fixed! (Pre-Plug-n-Play PC devices)

— Read/write indirectly via the pointer

#define ETHER MCSR Oxfff78420
unsigned int regValue, *csr;
csr = ETHER MCSR;

regValue = *csr;

Software Bit-Diddling

e Setting individual bits:
— Get the current value
— OR in the desired bit
— E.q., to turn on Loopback mode (bit 3):
#define LOOPBACK FLAG O0x8 // or (1<<3)
*csr |= LOOPBACK_ FLAG,;
e Clearing individual bits:
— Get the current value
— AND with the complement of the desired bit
— To turn off Loopback mode:
*csr &= ~LOOPBACK FLAG;

Software Bit-Diddling

e Complementing individual bits
— XOR with the desired bit
*csr “= LOOPBACK FLAG; // invert the flag!
e Reading groups of bits as a number;
— AND the register value with the desired bits
— Shift to proper magnitude
— E.qg., to check number of retries (bits 4-6):

#define RETRYCOUNT SHIFT 4
#define RETRYCOUNT MASK 0x70
numRetries = *csr & RETRYCOUNT MASK;

numRetries >>= RETRYCOUNT SHIFT;

Anatomy of a Packet Transmission

Assumptions:

User-space C program
using TCP via "sockets"
interface

Sending a 500-byte
message

Machine connected to an
Ethernet

Modern Operating System
No prior messages sent

e N.B. This is generic and
greatly simplified!

@plicatiob

C library

USer space

socket interface

TCP

IPv4

Ethernet Device

kernel

Hardware

Anatomy of a Packet Transmission

1. Application calls
"send(sock#, bufPtr, 500)"

Run-time C library
implementation of send()
pushes arguments on stack

Implementation executes a
"system call trap" instr.

Address of kernel trap svcing
routine loaded into PC

Processor changes to
privileged mode

data

Application

~ send(...)

trap

USer space

socket interfgce

TCP

IPv4

Ethernet Device

kernel

Hardware

Anatomy of a Packet Transmission

Q
2. Trap handler invokes kernel - o
: : Application 0
implementation of send() cony
system call send(...) >
e Validates arguments (e.q., — =
pointer is in the proc's address s sysndC Gueve
space) TCP T
e Copies user data into kernel o
address space, adds buffer IPv4
header _
e Locates the state data structure Ethernet Device
for the socket
Hardware

o Verify the socket state is OK to
transmit

e Appends the data to the socket's
send queue (assumed empty)

Anatomy of a Packet Transmission

3. System call invokes
(indirectly) socket's
sk_send function

Invokes TCP "send_data()"
function, which:

e Retrieves the relevant TCP
state info

e Checks whether it is possible
to send anything (flow ctl)

e Constructs 20-byte TCP
header, prepends to message

TCP send_data invokes

"ip_output()" with packet

(D)

(40)

Application &

2

send(...) >
*sk_snd(..) 7‘|_|queue

7
C_) send_data(..)':r @
g
IPv4

Ethernet Device

Hardware

4.

Anatomy of a Packet Transmission

ip_output(...)

Gets destination IP address from

TCP state data structure (layering

violation)

Looks up that address in

forwarding table to get a route

(= logical interface + next hop IP
address)

Prepends 20-byte IP header to
TCP packet

Invokes the interface's output
routine, bound to Eth_output()

S

Application &

2

send(...) =
*sk_snd(..) A
/

send_data(..) /' @

ip_output(. .)':'

Ethernet Device

Hardware

Anatomy of a Packet Transmission

4. Eth_output(...) Aplication— &
e Resolves next-hop IP 2
address to Ethernet address send(...) 3

via ARP (may queue) *sk_snd(..)

e Prepend 14-byte Ethernet
header (incl. dest addr) =eitecaa) !

e If there is an available ip_output(..) /|

TxBufDescriptor, make it (EcEth_output(,,)é|

point to packet data

e If necessary, start the Hardware
hardware device

e Free the kernel buffer hdr

kernel

TxBD

Anatomy of a Packet Transmission

data

5. Control returns up the Applicaior g
stack 2
send(...):

e Success indication returned
to application program

6. Hardware eventually
transmits packet per ip_output(;)
Ethernet protocol qmmd)

Hardware

*sk_snd(..)

send_data(. é)

kernel

TxBD

Packet Transmission: Highlights

e Message gueued in at least two places:

— Socket transmit queue
e May wait if socket is flow-controlled at transport level

— (Maybe) ARP queue
e Waiting for reply from target

— Device output queue
e May wait if channel is busy

e Packet processing happens in single thread of
control all the way to device driver

e When send() returns, message may or may not
have been transmitted

Anatomy of a Packet Reception

1. Hardware recognizes Appiication g
frame addressed to this Y 3
station

_ socket interface
e Places packet into B
memory per next free TCP %
RxBD IPv4 =

e Hardware generates
device interrupt

Ethernet DeV|ceA_ Introt

Hardware -

1 RxBD

2.

Anatomy of a Packet Reception

Q

Current thread is interrupted; _ S
Ethernet interrupt service routine @Pl'cat'ob <
runs : i

Checks device status for errors & [BER,

Verifies dest. address matches socket interface

device address

Allocates kernel buffer hdr for packet TCP @

data o

Determines next protocol (IP) IPv4 5

Strips Ethernet header : HLqueue

Places b|uffer header in that C == - It

protocol's input queue Hardware

Make RxBD point to a fresh buffer

Schedule the kernel net service
thread to run

Return from interrupt; scheduler
runs highest priority thread

O
? RxBD

Anatomy of a Packet Reception

Q
3. Net service thread detects @p" CatioD 2
nonempty queue, calls 5
ip_input(), which: Gl 3
e Dequeues packet socket interface
e Sanity-checks IP header =— -
. C(rjldecks that pacl;e‘::r']si,sdszfliilg:gon IP o E
address = one o ip_inpu
addresses > M—Q\] e
o Determines next-higher protocol Ethernet \
e Invokes that protocol's input Hardware o

routine indirectly via "switch table"

In this case, the actual routine is
tcp_input()

Anatomy of a Packet Reception

4, tcp input()

Retrieves relevant protocol state,
using both IP and TCP headers

e Determines if data is acceptable
per TCP sliding window protocol
o If so:

e Strips IP + TCP headers by
advancing buffer pointer

e Retrieves associated socket state

e Places packet payload in socket
receive queue

e If any application process is
blocked on the queue, make it
runnable

e Returns

5. Net service thread blocks if no
packet in net-level (IP) queue

Q
O
(4]
@plicatioD &
2
C library >
socket interface]E‘ socket
queue
tep_input() 8| |2
p-input() |
......... ["
Ethernet queue
Hardware

Anatomy of a Packet Reception

6. Application calls "recv(sock#,
buffer, 1000")

e Run-time C library implementation
of recv() pushes arguments on
stack

e Implementation executes a
"system call trap" instr.

e Address of kernel trap svcing
routine loaded into PC

e Processor changes to privileged
mode
Note: this step may happen before
previous steps

buffer

Applicgtion
recv(...)

— trap

USer space

socket interf'ace

tcp_input()

ip_input()

Ethernet

kernel

Hardware

Anatomy of a Packet Reception

Q
7. Trap handler invokes kernel .]
: : Application 0
implementation of recv() 5
system call recv(...) [trap|] >
e Validates arguments (e.g., pointer a
is in the proc's address space) —Sk_IC 9] socket
e Invokes socket's recv() function tep_input() T
e Locates the state data structure — g
for the socket ip_input()
. Verlf_les the socket state is OK to Ethernet
receive
o If there is data in the socket queue Hardware

o Copy it into the user's buffer; free
kernel buffer header

e Return
e Else block until data arrives

Anatomy of a Packet Reception

/. Trap handler invokes kernel
implementation of recv()
system call

Validates arguments (e.g., pointer
IS in the proc's address space)

Invokes socket's recv() function

Locates the state data structure
for the socket

Verifies the socket state is OK to
receive

If there is data in the socket queue

o Copy it into the user's buffer; free
kernel buffer header and buffer

e Return
Else block until data arrives

USer space

tcp_input()

ip_input()

Ethernet

ﬂ socket
queue

kernel

Hardware

Packet Reception Highlights

Control flows from the bottom up

Three different threads of control

— Hardware interrupt

e Must run very fast because it blocks everything else
— High-priority "network service" thread

e Processes data via function calls upward through stack
— User program

Data must queue somewhere between hardware and
user program
— There exists an "Asynchronous-synchronous" interface

In this example, there are two queues
— IP input

— User input

(What happens when these queues get full?)

Packet Reception Highlights

e Some protocol layers have to determine which
next-higher layer to invoke by looking at their
own header information

— Examples: Ethernet, IP

e Typically this is done indirectly, via a table of
protocol functions

— Header field value used as index into protocol table

