Vulnerabilities

Dr. Thomas A. Johnson
University of New Haven
Part 2
Network Security
STEGANOGRAPHY
• To hide in plain sight
• Today’s electronic microdot
• Uses BMP, GIF or WAV files
S-tools v.4

1450Kb

can hold up to 185,505 bytes
Hiding 147,845 bytes

Passphrase: secrets

Verify passphrase:

Encryption algorithm: IDEA

OK Cancel Help
Hidden Message
Steganography

- Container can be
 - Bitmap, GIF, WAV file

- Message can be
 - image, sound, text, spreadsheet, etc…

- Can be an image on the Corporation Website
 - why worry about sneaking out a document?

- Can be guarded with a pass phrase and encrypted
 - you can download it and still not see the message
IP Address
Internet Protocol
IP Addresses

• What is the difference between an internet and a physical network?
 – Network depends upon infrastructure
 – an internet is a ‘logical’ network / extended network constructed from software overlays on top of existing computer systems / networks
IP Addresses

- Uniformity in addressing allows messaging between systems despite the differences in structures.
- Each host is assigned a 32 bit address (4 bytes) known as an Internet Protocol Address (IP Address).
- Host must know destination address to send message to.
IP Address Hierarchy

• IP divided into prefix and suffix
 – prefix physical network of computer
 – suffix individual host on that network

• prefixes must be unique on a global basis
 – suffixes unique only to that particular network
IP Classes

• The first 4 bits of the IP address determine which class it belongs to:
 – values 0 - 7 class A
 – values 8 - 11 class B
 – values 12-13 class C
 – value 14 class D
 – value 15 class E
IP Classes

- Classes A, B, C are *primary classes*
 - used for host addresses
 - A prefix / suffix boundary between bytes 1 & 2
 - B prefix / suffix boundary between bytes 2 & 3
 - C prefix / suffix boundary between bytes 3 & 4

- Class D
 - multicasting (set of hosts)

- Class E
 - reserved for future use
Dotted Decimal Notation

- Octets represented as 4 decimal values
 - 10000001 00110100 00000110 00000000
 - 129.52.6.0
 - 0.0.0.0 thru 255.255.255.255 range
- Classes (first octet range)
 - A 0 - 127
 - B 128 - 191
 - C 192 - 223
 - D 224 - 239
 - E 240 - 255
Hosts accommodated in Classes

- A 128 networks 16,777,216
- B 16384 networks 65,536
- C 2097152 networks 256

- IANA (Internet Assigned Number Authority) assigns numbers to ensure uniqueness
Special Addresses

• Never assigned to hosts
 – Host address zero reserved to denote network
 • 128.211.0.0 class B prefix
 128.211
 • should not appear as normally as destination address in packet
Special Addresses

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Suffix</th>
<th>Type</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeros</td>
<td>Zeros</td>
<td>This host</td>
<td>Boot process</td>
</tr>
<tr>
<td>Network</td>
<td>Zeros</td>
<td>Network</td>
<td>Identify network</td>
</tr>
<tr>
<td>Network</td>
<td>Ones</td>
<td>broadcast</td>
<td>On that net</td>
</tr>
<tr>
<td>Ones</td>
<td>Ones</td>
<td>Broadcast</td>
<td>Local net</td>
</tr>
<tr>
<td>127</td>
<td>*</td>
<td>Loopback</td>
<td>Testing</td>
</tr>
</tbody>
</table>
Special Addresses

• Pools of IP addresses reserved on local networks
 – not in use on Internet
 • 10.0.0.0 thru 10.255.255.255
 • 172.16.0.0 thru 172.31.255.255
 • 192.168.0.0 thru 192.168.255.255
 – for use behind firewall or proxy
 • LAT (Local Address Table) shows these as belonging to internal network
BSD

• Variation of Unix (Berkeley) used all 0’s as a broadcast instead of all 1’s
 – some Unix ‘flavors’ are based on BSD
Addresses

• Routers are assigned IP addresses (at least two)
 – each IP contains prefix ID’ing physical network
• Examples of connecting networks
 – Ethernet 131.108.0.0
 • router 131.108.99.5 / 233.240.129.2
 – Token Ring 233.240.129.0
 • router 233.240.129.17 / 78.0.0.17
 – WAN 78.0.0.0
Multihomed Hosts

- Host connected to multiple networks
 - multiple IP addresses assigned
 - redundancy
Subnet masking

- Method to logically divide a network
 - mixed topologies (TR & Ethernet)
 - control traffic congestion (bandwidth intensive applications)
 - reducing number of InterNic addresses required
Subnet Masking

- How many segments does network need addresses for? (physical segment separated by routing device)
- Future requirements?
- Number of hosts on the largest segment?
- Future host on a given segment?
Class A subnet

```
11111111 00000000 00000000 00000000
Network  Host

11111111 11111111 00000000 00000000
Network  Subnet  Host

Extended Prefix
```
Masking

- Used to determine if host and destination on the same physical network by performing the AND with subnet mask
 - results of ANDing the same? Same network

- IP 172.16.2.4
 - Mask 255.255.0.0

- IP 172.16.3.5
 - Mask 255.255.0.0
Subnet Mask Problems

• Cannot communicate with remote hosts
• Cannot communicate with a local host (time out type messages)
• Local host believed to be remote
IPv6

• 128 bit addressing (compared to 32 bit)
• IP Header changes
 – removal of old IPv4 header information
 – forwarding info, option fields length
 information, future capability for option
 fields
 – flow control for QOS
 – security (authentication of src & dest); encryption
DNS

Domain Name Services
ICMP

- Internet Control Message Protocol
 - IP uses ICMP to send an error message
 - ICMP uses IP to get across the network
 - 5 Error messages
 - 4 Info messages
ICMP error messages

- Source Quench
 - Tell the sender to slow down transmission

- Time Exceeded
 - TTL reaches zero (0)
 - reassembly timer on receiver expires

- Destination Unreachable
 - host cannot be reached.. Or network cannot be reached

- Redirected
 - Change in routing

- Fragmentation required
 - “Don’t fragment” bit is set in header; message can’t get across due to MTU size
ICMP info messages

- Echo Request / Reply
- Address Mask Request / Reply
 - host boots and broadcasts AMR; routers send back reply w/ 32 bit subnet mask for that network
ICMP

• Encapsulation
 – ICMP and header bundled into IP packet
 – IP header and data (which is the ICMP datagram) bundled into frame
 – Frame and Frame header sent across the physical network

• Replies know where to go back since source address is part of the IP header
• no priority is assigned to ICMP traffic
• ICMP message has an error? No ICMP error message generated for this error...
PING

• Echo request reply
 – sees if a host is “reachable”

• TTL used (contained in header)
 – router checks sum
 – count decrements by one at each router
 – checksum generated and message forwarded
 – TTL 0?
 • Discard the message
Traceroute

• UDP used to send messages
• TTL is increase by one on successive messages until a host is reached
• UDP attempts to “talk” with an non-existent application on a remote host
 – either returns with ‘non-existent host’ or ‘time expired’ message
Path MTU discovery

• Messages of decreasing size sent across with the “don’t frag” bit set
 – if MTU too small, ICMP reply of “Frag Req’d” is returned
• “feedback” mechanism
ICMP Message Types

- 0 Echo Reply
- 3 Destination Unreachable
- 4 Source Quench
- 5 Redirect
- 8 Echo
- 9 Router Advertisement
- 11 Time Exceeded
- 30 Traceroute
CYGWIN

- Linux style ‘shell’ operating under a Windows environment
 - Get the feel for Linux
Cygwin (GNU + Cygnus + Windows)

- Allows the user (via cygwin1.dll API) to display a Unix “bash shell” feel
 - user can still execute Windows instructions from within
- packages can be selected
 - you can d’load source as well
 - user can get Xfree86 library and run X-Windows
- grep, nmap, perl,
Window C / C++ development

• Installing GCC, GDB, make, Binutils
 – **FREE** Windows C/ C++ development platform
 • (not as pretty, but....)

FREE
NMAP under Cygwin

$ nmap -T 148.4.11.220
Starting nmap V. 3.00 (www.insecure.org/nmap)

Note: Host seems down, if it is really up, but blocking our ping probes, try -P0
Nmap run completed -- 1 IP address (0 hosts up) scanned in 63 seconds

$ nmap -T 127.4.0.1
Starting nmap V. 3.00 (www.insecure.org/nmap)
rwrencu_open: SIO_RWakeup failed (10022) on device loopback0
QUITING!

$ nmap -T 148.4.11.220
Starting nmap V. 3.00 (www.insecure.org/nmap)
Identification only works with connect scan (-T5) ... ignoring option
Note: Host seems down, if it is really up, but blocking our ping probes, try -P0
Nmap run completed -- 1 IP address (0 hosts up) scanned in 62 seconds

$ nmap -I -P0 -T 148.4.11.220
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on CMap (148.4.11.220):
(The 1591 ports scanned but not shown below are in state: closed)
Port State Service Owner
135/tcp open loc-srv
139/tcp open netbios-ssn
145/tcp open microsoft-md
1025/tcp open unknown
1720/tcp open nsl22땧9,991
389/tcp open ldap
5000/tcp open UPnP
6000/tcp open X22

Nmap run completed -- 1 IP address (1 host up) scanned in 322 seconds

$ ipconfig
Windows IP Configuration

Ethernet adapter Local Area Connection:

$ cat passwd
SYSTEM:*;13:544;;
Administrators:*;544:544;;
Administrator:;544:544;;
Administrators:;1-5-5-16;;
Guest:;1-5-5-16;;
Guest:;5-1-5-5-16;;

$ cat /etc

/etc

$ cat /etc/passwd
SYSTEM:*;13:544;;
Administrators:*;544:544;;
Administrator:;544:544;;
Administrators:;1-5-5-16;;
Guest:;1-5-5-16;;
Guest:;5-1-5-5-16;;

$./ /bin/bash

Discovery Methods
Discovery / enumeration

- Pinging
 - ICMP packets returned might “fingerprint” the OS of the target system
- Email
 - trace headers
- Instant messaging
 - IRC
 - finger
 - whois
 - DCC (direct IP-IP)
 - netstat
Other applications

- Utilize another feature of application which allows for direct point-to-point
 - ICQ
 - can simply netstat
 - MSN messenger
 - built in file transfer
 - then netstat
Netstat

• netstat –r
 – shows routing information on local
• netstat –a
 – all open connections
• other options
 – -n numerical format of IP and port
 – -e Ethernet stats
 – -s per protocol stats
 – -p protocol TCP, UDP or IP
 – interval in seconds; CTRL+C to stop
 (windows)
Netstat

- states
 - Established
 - TIME_WAIT
 - FIN-WAIT_2
 - SYN

- Port numbers
 - RFC 1700 lists assigned port numbers
Netstat

- Privileged (well-known) ports
 - 0-1023
- Registered
 - 1024 – 49151 used by applications
- Dynamic / Private
 - 49152 – 65535
 - rarely used… many Trojans use this range
Firewalls

• Personal
 – Black Ice Defender
 – Zone Alarm
 – McAfee Guardian
Zone Alarm Exploit

• versions 2.1.10 to 2.0.26
 - packets directed at host using source port 67 are allowed through

NMAP
 - UDP
 nmap -g67 -P0 -p130-140 -sU 127.0.0.1

QUITTING!

Starting nmap V. 3.00 (www.insecure.org/nmap)
rawrecv_open: SIO_RCVALL failed (10022) on device loopback
QUITTING!

Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on 148.8.11.220:
<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>130/udp</td>
<td>open</td>
<td>cisco-fna</td>
</tr>
<tr>
<td>131/udp</td>
<td>open</td>
<td>cisco-tna</td>
</tr>
<tr>
<td>132/udp</td>
<td>open</td>
<td>cisco-sys</td>
</tr>
<tr>
<td>133/udp</td>
<td>open</td>
<td>statsrv</td>
</tr>
<tr>
<td>134/udp</td>
<td>open</td>
<td>ingres-net</td>
</tr>
<tr>
<td>135/udp</td>
<td>open</td>
<td>loc-srv</td>
</tr>
<tr>
<td>136/udp</td>
<td>open</td>
<td>profile</td>
</tr>
<tr>
<td>137/udp</td>
<td>open</td>
<td>netbios-ns</td>
</tr>
<tr>
<td>138/udp</td>
<td>open</td>
<td>netbios-dgm</td>
</tr>
<tr>
<td>139/udp</td>
<td>open</td>
<td>netbios-ssn</td>
</tr>
<tr>
<td>140/udp</td>
<td>open</td>
<td>emfis-data</td>
</tr>
</tbody>
</table>

Nmap run completed — 1 IP address (1 host up) scanned in 38 seconds

C:\Documents and Settings\CM>^O
Proxy Server

- Wingate
- Squid
Wingate

- Uses port 23
- SOCKS on 1080
- IRC on 6667
Wingate

• TELNET on 23
 – used for intercommunicating between hosts behind the proxy
 – no password required
 • ANYONE can Telnet in!!!
 • can use this to hide ID from target
Wingate

Locate systems using Wingate scanner

Network Port Scanner
Updated by Omar S.
Fancy on Saturday, March 23rd 2002

A small yet fast network port scanner with wingate detection.
Licence: GPL

Version: 1.01 [Stable] 0.50 [Development]

Wingate

• Connect to Port 23
 WingateBox>
 \texttt{telnet real_target_system_IP:23}
Wingate

- Once connected, issue commands to target
- “BOUNCE” attack
- no record, unless the Wingate box records it
 - can “bounce” from proxy to proxy
Wingate Host

- SOCKS and IRC
 - can also be leveraged for BOUNCE attacks
Wingate

- Countermeasures
 - disable access to ports from outside hosts
Squid

• Use `ipchains` to set up a transparent proxy
 – redirects request to another port *on the same machine*
 – appears that connection is direct
• HTML exploit

```html
<html>
<body>
<script>
var ip = new java.net.InetAddress.getLocalHost();
var ipStr = new java.lang.String(ip);
document.writeln(ipStr.substring(ipStr.indexOf('/')+1));
</script>
</body>
</html>
```

• Additional information can be obtained
 – OS, browser information, ISP, country, screen resolution, etc
Countermeasures

• Proxy server
 – hides IP information
 – hides other information as well
• Anonymizers
 – hide IP
 – don’t necessarily hide other information
Port scanning

- TCP connect
- TCP SYN
- SYN/ACK
- TCP FIN
- TCP NULL
- TCP XMAS tree
TCP connect

- Detected
- Difficult to counter
 - might be legitimate request to connect to server
 - monitor packets
 - stateful filters
SYN Scans

- “half connect” scanning
 - `netstat –a`
 - shows state of “SYN_RECEIVED” on multiple ports
- not stealthy
- blockable
- target replies either with
 - `SYN/ACK`
 - listening
 - `RST/ACT`
 - no service on that port
SYN/ACK

- sent to:
 - closed port
 - RST reply
 - open port
 - typically no reply

- No reply
 - also possible due to firewall interception
TCP FIN

• Open port
 – should not respond to FIN
• no service or closed port
 – UDP
 • ICMP
 – TCP
 • RST packet sent back
• some operating systems send RST as response to FIN on open port
 – possible method of fingerprinting
TCP Null

• packet with NO flags set
• target baffled
 – open port?
 • responds with error message
 • could discard packet
 – closed port?
 • RST response
TCP XMAS tree

• ALL the flags are set
• port open?
 – error message response
 – or discard of packet by target
• port closed?
 – RST response
ACK Scanning

• TTL < RST packets received earlier
 – port is open and listening
• window’s size > 0
 – port is open and listening
UDP scanning

• closed port
 – ICMP error message response
FTP Bounce Port Scan

• connect to FTP of host
 – from there
 • connect to *any port of any system including target*

• PORT command
 – used to open connection between client and server
 – once connection established, PORT to another host
 • if the bounce server can see it, *YOU can see it*
 – even if you don’t normally have rights to it!
FTP Bounce Countermeasure

- Configure the FTP server
 - DO not allow connections with host other than client
Port Scanning

- **nmap**
 - OS detection
 - ping sweeps
 - mapping networks
- **Strobe**
 - TCP port scanner
- **hping**
 - custom packets (ICMP/UDP/TCP)
Scanning countermeasures

- Scanlogd
 - Unix
- BlackIce
 - Windows
- Portsentry (Abacus)
- NukeNabber
 - Windows
214 Direct comments to ftp-bugs@phoenix.
ftp> literal stat
211–phoenix FTP server status:
 Version 4.1 Thu Sep 12 23:46:23 CDT 2002
 Connected to 148.4.11.220 (::ffff:148.4.11.220)
 Logged in as cmalinow

 No data connection

211 End of Status
ftp> literal syst
215 UNIX Type: LS Version: BSD-44
ftp> –
IDENT (port 113)

- owner information
- OS information
- DISABLE this service
ICMP

• Echo Request / Echo Reply
 – host alive
 – fingerprint OS
• Timestamp request
 – determine target’s time
 • target alive?
• Address Mask Request
 – Subnet address
Sniffers

- tcpdump
- Ethereal
- etherpeek
- Dsniff
Sniffers

- Countermeasures
 - NIC in promiscuous mode indicates sniffer
 - “cpm” utility determines if NIC in that mode
 - sniffer might be in task list / process list
 - log file
 - hidden directories
 - AntiSniff
 - L0phtCrack
 - network based sniffer detection
 - infrastructure
 - switched network
 - encryption
Routing Tables

• Why bother
 – indicates entry and exit mechanisms
 – attack points

• Netstat –rn
 – on Unix
 • indicates if it’s a router, a gateway, a host, or redirected
 • also indicates number of users
 • packets using that node
nslookup

- performs reverse lookup for IP
- Sam Spade
 - Windows based application
Whois

• some tools incorporate 'whois'
• www.allwhois.com

Allwhois is the most complete whois service on the internet. It automatically locates the appropriate "whois" database server for a particular domain name, queries that database for information about that domain name, and returns all available data. If a "whois" database does not exist for a particular domain name, a Root Name Server query will check the domain's availability. For a complete list of domain extensions click here.
Attacks
Ping Of Death

- ping –l (length) hostname
 - using the “l” option, send a packet in excess of 64K
 - might hang system / crash it
Teardrop

- Fragmentation attack
- overlapping fragments
SYN flooding

- overwhelm host with connection attempts without the subsequent connection
- source IP in packet is invalid
- indicated by the SYN_RECEIVED in netstat
 - half open connection
- Countermeasures
 - reduce timeout time
 - increase connection requests
 - patches
 - firewalls
LAND attack

• like Syn, except the IP address and the Port number are the same as the target
 – infinite loop

• Firewall
 – outgoing packets having destination IP the same as the local IP address
Smurf attack

• Brute force
 – forces a condition where a target responds back to IP on same network
 • floods the network
UDP Flood attack

• Chargen or echo service attack
 – loop between two or more services producing output
• Disable services unless / until required
DDoS

- Trinoo
- ‘zombie’ machines
Modem Disconnect

- use the `echo` command
 - generate control characters for the escape sequence
 - issue the “hangup” command
- **ATH0 attack**
 - target allows ICMP echo packets
 - target uses a modem
 - need capability of spoofing packets
 - unless you don’t care if they know..
- modem can be set to ignore the control sequence and treat it as data
 - depends on modem
IP Spoofing

• Convince target that source IP is not you
• difficult to spoof from Windows system
• Sys admin can protect against it
IP Spoofing

- Responses to “you” never reach you since it’s a faked IP address
 - “blind” attack
- The “fake” IP receives the response
 - possible the REAL guy responds back
- Spoofed IP must exist
 - not respond back the packets sent to it from target
- Trust relationship
IP Spoofing

• Sequence numbers
 – upon boot
 • ISN (initial sequence number issued)
 – 1
 • updated by 128,000 every second
 • with each connection
 – incremented by 64000
 • ISN incremented by 1 after certain packets issued
 – SYN, FIN,

• Acknowledgement number
 – the number the system expects to receive next
 – serves to acknowledge receipt of packets with lower sequence numbers

• Spoofing takes advantage of predictability of sequence number generation
 – session hijack
 – trust relationship
 • expected sequence number and IP address.. it MUST be the proper host
IP Spoofing

• Locate trusted system
• disable that system
 – so it won’t respond back to spoofed packets
 – DOS attack
• hijack the session
 – obtain ISN
 • send several packets to determine timing of ISN generation
 • note sequence numbers
 • calculation can take into account the round-trip-time
 – (propagation delay)
• after attack
 – send FIN
IP Spoofing

• Examine trust relationships
 – consider authentication, ACL as user based rather than system (IP) based
• Firewalls
 – incoming packets having internal IPs
 – outgoing packets having external IPs
• encryption
• random ISNs
TCP wrappers

• Access Control Rules
 – which systems allowed access to which services

• TCP wrappers
 – log clients using those services
 • time
 • purpose
 – booby trapping
TCP Wrappers & Services

- `/etc/services` defines
 - services
 - port numbers
 - used by inetd

- `/etc/inetd.conf`
 - names of services
 - daemon/program associated with service
TCP Wrappers & Services

- incoming request for port xx
- inetd then:
 - looked up in /etc/services
 - then looks up daemon in inted.conf
TCP Wrappers

• interposed between inetd and the actual daemon / programs initiated by inetd
• access allowed based on IP source information
• request is logged
TCP Wrappers

• uses
 – /etc/hosts.allow
 – /etc/hosts.deny

• allows checked first
• then deny
• if no match (or both empty) then access allowed
/etc/hosts.deny

• deny telnet and ftp
 in.telnetd in.ftpd : xyz.badsite.net .badsite.com
 – denies services to xyz.badsite.net and entire badsite.com domain
 ALL: xyz.badsite.net .badsite.com

 – Wildcards
 • ALL
 • UNKNOWN unresolved by DNS
 • KNOWN
 • PARANOID names doesn’t match IP

 in.telnetd : ALL EXCEPT mysite.net
Authentication

qou vadis?
Kerberos

• Doesn’t prevent / assumes
 – Password guessing or cracking
 – assumes physical security of hosts
 – DoS attacks
 – assumes hosts synchronized time-wise
 – AS must be secure
CHAP

• Challenge Handshake Authentication Protocol
 – used over PPP
 – Challenge and response between server and client
 • done at Network Layer
 • 1) Use CHAP?
 • 2) Response: Yes
 • 3) Send Challenge
 • 4) Respond
 • 5) Indicate success / failure
 – terminate session
 • 6) Randomly periodic challenges
 – should change and not be the same
CHAP

- Problems:
 - passwords should not be the same in both directions
 - Replays
 - not all implementations terminate the session
 - allow access to some of the Network Layer protocols
 - possible to update passwords
Digital Certificates

- email
- e-commerce
- transfer of electronic funds

- Combined with digital signatures and encryption
 - 3rd party to qualify individuals / organizations as trusted certificates
Security Tokens

• Assigned to a specific user by a specific administrator
 - small, carry-around devices
 - may be “binary”
 • device
 • password or pass phrase possessed by the user

• Lose the token, lose the access….
Passive Tokens

- Storage device for ‘base keys’
 - notches on device matched on receiver
 - magnetic strip
 - ATM cards
 - optical bar code
- Magnetic strips easily copied
 - usually may require a PIN
- ESN digitally encoded on cell phone
 - identifies the phone and is associated with a phone number (i.e., account)
 - ESN is broadcast
 - read at access points such as traffic thoroughfares
 - encoded into other cell phones
Active Tokens

• Actively creates a ‘base key’
 – one-time password
 – encrypted form of base key
• ‘smart cards’
 – IC containing memory / processor
 • contact or contact-less
 – can double as:
 • employee ID
 • credit card
 • card-key
 – can also store personal information, biometric information, PKI, digital certificates, etcetera
• PCMCIA
• USB tokens
One-time Passwords

- limited duration
- once used, invalidated
- generated:
 - counter-based
 - combines a counter with the ‘secret password’
 - clock-based
 - requires synchronization with a server’s clock
- Susceptible to attacks
 - IP address theft, man-in-the-middle, redirection (phone)
Biometrics

• Information provided is particular to the owner that doesn’t change over time

• Types:
 – Physical
 • fingerprint
 • features
 • hand geometry
 • retinal
 • iris
 – Behavioral
 • written signature
 • voice
Biometrics

• Needs to be initially scanned or ‘registered’
 – Digitized
 – Repository (centralized, localized, portable)
 – server, smart card

• Scan upon access request
 – comparison of data and grant / deny access

• Maintain record of scan and result
Biometrics

- False positives (improper authentication)
 - due to relaxing of standards in comparison
- False negatives (improper denial)
 - measurements changed from initial scanning
 - facial features
 - weight gain, or other pathology
 - retinal scan
 - change in blood vessels (pregnancy, etc)
 - improper measurement
 - equipment faulty / improperly cared for
 - background noise (voice scans)
Biometric problems

- Device used to scan / measure may be cumbersome or not portable enough
- Social issues
 - Fingerprint scanning and privacy issues
- Inability of system to cope with changes from initial scan registered
 - due to changes in principal or equipment
- Security of repository containing registered scan
- Security of the channel over which the transaction occurs
- Ability to fool the system
 - fingerprints “lifted” and duplicated in gelatin can fool the system
Multi-factor Authentication

• Factors:
 – known to principal
 • password
 – ownership by principal
 • smart card
 – property of principal
 • biometric

• Use \textit{at least \textbf{ONE}} of each factor to verify identity
Exploits

Port Vulnerabilities
Sources:

- Hack Attacks Revealed
 – John Chirillo
Exploits

“Normal” services available
Ports

- TCP and UDP
 - associated with an application or process with is “listening” or “waiting to speak”
 - the application / process is the requestor of
 - a) port number
 - b) the protocol
Port 7 / TCP

• Echo
 – ICMP packet
 – Ping of Deatch
 • send an oversize packet
 • buffer overrun
 – packet processed incorrectly
 – system reset / halt

 – Ping flooding
Port 11 / TCP

- Systat
 - can reveal information on operating system of host
Port 15 / TCP

- Netstat
 - connection information
 - subsystem information
 - protocols
 - addresses
 - connected sockets
 - MTU sizes
Port 19 / TCP

• chargen
 – can be used to generate characters
 – output can be redirected to a telnet connection

• for example DNS (port 53)
 – can blow up DNS services
Port 20 & 21 / TCP

- ftp
 - 20 data
 - 21 ftp control connection
Port 23 / TCP

- telnet
 - terminal emulation for issuing console commands
 - allows access to host
Port 25 / TCP

- SMTP
 - mail bombing, spamming, DoS attacks
Port 43 / UDP & TCP

- whois
 - runs on central machines
 - network-wide directory services
- discover
Port 53 / UDP & TCP

• domain
 – name associated with IP address(es)
 • lookups performed
 – DNS spoofing
 – DoS
Port 67 / UDP

• bootp
 – diskless workstation discover its own IP
 • buffer overflow
Port 69 / UDP

- tftp
 - used to load files into various devices
 - switches, routers
 - doesn’t have the complexity of ftp
 - fits into ROM
 - designed for bootstrap process
 - no username / password required
 - able to retrieve sensitive files
 - /etc/passwd
Port 79 / TCP

• finger
 – used in discovery
 • social engineering
Port 80 / TCP

• http
 – web hacks
Port 109 & 110 / TCP

- pop2, pop3
 - pop2
 - requires smtp server daemon
 - pop3
 - server can reveal information by telneting in
Port 111, 135 / TCP & UDP

- 111 Portmap
 - converts RPC into port numbers
 - knows every registered port on host
 - knows programs available on ports
- 135 Loc-serv
 - NT’s version of portmap
 - NIS domain name might be discoverable
 » possible to get copy of password file if NIS domain known
Port 137 UDP, 138 UDP, 139 / TCP & UDP

- nbname, nbdatagram, nbsession
 - Wins / Netbios name service
 - lack of authentication
 - nbname
 - broadcast resolution
 - nbdatagram
 - broadcast discovery
 - nbsession
 - point-to-point communications
Port 144 / TCP

- news
 - Network extensible Window System
 - (Sun Unix)
 - PostScript window system interpreter
 - extensions for drawing on screen
 - handles input events
Port 161 & 162 / UDP

- snmp, snmp-trap
 - directs network traffic
 - PDUs (protocol data unit) sent to network devices (agents)
 - information stored in Management Information Bases
 - MIBs
 - data returned to snmp requestors
Port 512 / TCP

- exec
 - for 'rexec'
 - X-windows client might be running
 - capture / display window
 - interject keystroke events
 - target also accepts telnets to port 6000?
 - possibly DoS attack target
Port 513, 514 / TCP

• login & shell
 – privileged ports
 – used for address spoofing
 – 514 also used for rsh
 – together might indicate X-Windows daemon
Port 514 / UDP

• syslog
 – DoS attack
Port 517 & 518 / UDP

- talk, ntalk
 - text conversations with another station
Port 520 / UDP

- route
 - RIP communicates with this port
 - target discovery
Port 540 / TCP

• uucp
 – Unix-to-Unix copy protocol
 • transfer of files
 • transmittal of commands
Port 543, 544, 750 / TCP

- klogin, kshell, kerberos
 - subject to attacks
 - DoSS
 - overruns
 - spoofs
 - masked sessions
 - ticket hijacking
Exploits

subverted ports
Port 21, 5400 - 5402

• Back Construction, Blade Runner, Fore, FTP Torjan, Invisible FTP, Larva, WebEx, WinCrash
 – possible to include server and client versions of program
 – often registry entry can be found under the “CurrentVersion\Run"
Port 23

- TTS
 - Tiny Telnet Server
 - runs in ‘stealth’ mode
Port 25, 110

• Can be a screen display or joke
• used to get system passwords, spam, keystroke capture, backdoor entry
• Ajan, Antigen, Email Password Sender, Haebu Coceda, Happy 99, Kuang2, ProMail Trojan, Shtrilitz, Stealth, Tapiras, Terminator, WinPC, WinSpy
Port 31, 456, 3129, 40421-40426

• Agent 31, Hackers Paradise, Masters Paradise
 – remote administration
 • application redirect
 • file manipulation
 • Registry manipulation
Port 41, 999, 2140, 3150, 6670-6771-60000

- Deep Throat
 - stealth FTP file servers
 - screen capture and viewing
 - password theft
 - reboot
 - open web browser
 - process control
Port 59

• DMSetup
 – mIRC chat client
 • corrupts startup files and mIRC settings
 • passes itself to communicator
Port 79, 5321

• Firehotker
 – Firehotker Backdoorz
 • file “server.exe”
Port 80

- **Executor**
 - command execution
 - system files and settings
 - sexec.exe
 - under \CurrentVersion\Run
 Executer1="c:\windows\sexec.exe"
Port 113

- Kazimas
 - IRC worm
- mIRC channels
 - file.. milbug_a.exe
 - in
 » \windows\kazimas.exe
 » \windows\system\psys.exe
 » \icqpatch.exe
 » \mirc\download\mirc60.exe
 » \mirc\logs\logging.exe
 » \mirc\sounds\player.exe
 » \games\spider.exe
 » \windows\freemem.exe
Port 119

- Happy 99
 - fireworks display
 - passwords, spamming, DoS and backdoor
Port 121

• JammerKillah
 – Trojan
 • autodetect BO and NB
 • puts in BO server
Port 541, 1045

- Rasmin
 - Lies dormant for wakeup..
 - rasmin.exe
 - wspool.exe
 - winsrvc.exe
 - inipx.exe
 - upgrade.exe
G-Lock Software

Trojan Port List: Resmin

Name: Resmin
Aliases: Wspool,
Ports: 531, 1045
Files: Wspool.exe - 59,904 bytes, Winp3x.exe - 59,904 bytes, Winvr.exe - 59,904 bytes, Upgrades.exe - 59,904 bytes, Resmin.exe - 59,904 bytes, Resmin.exe - 59,904 bytes, Resmin.lgc -
Created: Jan 1999
Requires: N/A
Actions: Destructive trojan
Resmin uses up all the memory and the infected computer crashes regularly.
Versions: N/A
Registers: HKEY\Software\Microsoft\Windows\CurrentVersion\RunServices\Repo
Notes: Works on Windows 95 and 98.
Country: N/A
Program: Written in Visual C++.

Using the Process Monitor from AATools, you will see whether any foreign programs are running on your computer. If you find some unwanted program, you can terminate it by clicking the 'Terminate Process' button on the Toolbar. Using the AATools Network Monitor, you can see what ports are in use on your local PC for connection with remote systems (LAN/Internet). On Windows NT/2000/XP the Network Monitor will display you the services that are active on the ports and map the ports to their respective applications. If you register port probes...
Port 555, 9989

- Ini-Killer, NeTAdmin, phAse Zero, Stealth Spy
 - Trojan
 - Phase zero
 - A simple trojan written in 1998. It's distinguishing feature is that the server can easily act as a remote FTP client. This allows a hacker to easily transfer files with an FTP server without exposing his/her IP address.
Port 666

- Attack FTP, Back Construction, Cain & Abel, Satanz Backdoor, ServeU, Shadow Phyre
 - Cain
 - steal passwords
 - AttackFTP, Abel
 - stealth FTP
 - Satanz Backdoor, ServeU, Shadow Phyre
 - remote access
Apparently, the Trojan starts an FTP daemon that listens for connections on port 999. The default directory for this FTP server is C:\TEMP and there's no need for username or password - any username/password pair will gain entry.

As we previously described, the Trojan gives remote access to the victim's machine. One of the features this Trojan give to the attacker, is the ability to format the victim's hard-drive. This is accomplished by running the following command:

```
>echo.y.,format,c:\",>c:\\autoexec.bat
```

This command adds a line to the autoexec.bat, instructing it to run an unconditional format the next time the computer starts.

Narui also found the command to be useful for trying to connect to:

```
```

After connecting to an IRC server, the Trojan uses one of the following nicknames:

```
USIL55, GUERIN, Entel, Proceg6, Rich0433, Niels, SL78, RFE-IMP63, Usl94, 
CCG67, Usil5, PROCEG6S, Authorized, Jorge, Suporte88.
```

A private message is sent to the nickname scroll and scroll1. The message looks like this:

```
Privmsg scroll Online! I am .... , I use .... , my CPU is a ....
```

```
Privmsg scroll1 Online! I am .... , I use .... , my CPU is a ....
```

One of the 'features' this Trojan give to the attacker, is the ability to format the victim's hard-drive. This is accomplished by running the following command:

```
echo.y.,format,c:\",>c:\\autoexec.bat
```

This command adds a line to the autoexec.bat, instructing it to run an unconditional format the next time the computer starts.
Backdoor WebEx 1.4

Written in Visual Basic

Released in March 1999

<table>
<thead>
<tr>
<th>Host Name/IP</th>
<th>Data Port</th>
<th>Connect!</th>
<th>Disconnect</th>
<th>View IP's</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>1001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program To Run: C:\Command.com

URL To Send To: http://www.microsoft.com

Text To Send: Surprise Sydney!

Server: Size: 99 KB

Buttons: Swap Mouse, Control Mouse, Run Program, Delete File, About, Exit
Port 1010-1015

Doly Trojan

by A-D-M
Port 1024

- NetSpy
 - file access
 - change directories
 - enable server control
 - system information
 - messaging
 - stealth execution of command
Port 1243, 6776

- BackDoor-G, SubSeven, SubSevenApocalypse
- `\windows\nodll.exe`
- `\windows\server.exe` or `kernel16.dll` or `window.exe`
- `\windows\system\watching.dll` or `lmdrk_33.dll`
The client section of the Trojan is the one installed in the infected computer via a tool designed for this purpose. This consists of a display with different sections within which it is possible to use the services offered by the server. Its aspect is as shown in the figure below and each of the services shown is explained in the text that follows.

Each of the services offered is offered and accessible via four tabs, each of them being the following:
Port 2989

• RAT
 – Trojan designed to trash hard drives
5880, 5882, 5882 (UDP), 5888, 5888 (UDP), 5889 (ports can be hanged)

• Actions:

• Remote Access / ICQ Trojan / IP sniffer / AIM Trojan / MSN Trojan
• Includes an ICQ IP sniffer and may send a notification to the hacker’s UIN. The server may be configured in many ways using combinations of some 40 features. It can stop local use of the Trojan, so nobody will be able use the client on the same machine as the server. As it is possible to alter the various registrations in the Registry, manual removal instruction may not be totally reliable.
Helpful folks on the 'Net…

- Skyrat 1.0
- SkyRat [Show]

- Sab Seven Gold
- Sab Seven MUJE
- Sab Seven 2.1 bonus
- Sab Seven Defcon
- Sab Seven 2.2
- Sab Seven MUJE server-unpacked
- Defcon server [data.zip file]
- Bonus server [data.zip file]
- Sab7 Patched Server (patched by Stan, will work on windows NT, 2k, and XP, woot!)

- Subzero

- Theef 1.1
- Theef 1.37
- TheefLE 1.0
- TheefLE 1.1.1

- the Thing 1.6 (blade’s ver)
- the Thing 1.6 (modified codwill version)

- Trojan Cow

- Ultimate Rat

- Ulter’s Telnet Server

- Undetected 3.0
- Undetected 3.1
- Undetected 3.2
- Undetected 3.3

- Webasylum

- Webdownloader Z (by fC)
- Webdownloader 3

- YSK 1.3
- YSK 1.4
- YSK 1.5
Sniffer Demo