
Computer Basics II:
Disks and File Systems

CS 585

Fall 2009

Storing Bits

• In the CPU/cache/memory:

– bits persist only as long as power is applied

• Disks and flash technology:

– bits persist across removal/reapplication of power

• Disk storage medium:

Platter: non-magnetic material (aluminum alloy or

glass)

Coating: thin layer of magnetic material
Typically 10-20 nm thick (smallest bacteria: ~200nm)

Outer carbon coating

Storing Bits

• Platter rotates at high speeds
– 5400, 7200, or 10000 RPM are common

– 2.5” platter @ 7200 RPM: outer edge moves ~53 mph

• Read/write head “flies” just above the surface

• Bits are represented by direction of magnetic
flux stored in discrete magnetic regions
– Each region contains ~100 magnetic grains

– Typical region dimensions (2006):
 200-250nm (radial) x 25-30nm (circumferential)

– Available density today: 3 to 4 x 1011 bits/in2

Disk Hardware

Disk Storage Technology

Disk Storage Technology

Magnetic regions in five tracks on an IBM 3380 disk
surface.

The surface held 1774 concentric tracks, about 22
million bits/in2.

“Perpendicular” Regions:
Higher Density

Disk Organization

Disk Geometry

• Sector = minimum unit of data transfer

– Generally 512 bytes

– Note: typical sector contains far more than 212 bits

• Synchronization bits – indicate beginning of track

• Redundant bits for error correction coding

• Track = ring of sectors on a platter

– Note: inner tracks are shorter than outer tracks!

• Head = platter surface (on multi-platter drives)

• Cylinder = all tracks at the same radius

Disk Geometry

Identifying Blocks

• Drives are usually characterized by “geometry:”
– Number of cylinders (C)

– Number of heads (H) (= tracks/cylinder)

– Number of sectors per track (S)

 C x H x S = number of addressable sectors

– In modern disks these are a convenient fiction
• Drive smarts hide the actual arrangement

• Sectors can be addressed by (C, H, S) triple

• Logical Block Addressing (LBA): treat the disk as a
linear array of sectors
– Blocks can be addressed by simple index

– Drive smarts keep track of the actual layout

Drives in the System

Disk Drive Interfaces

• Early days (ST-506, Shugart/Seagate)

– Dumb drive, separate controller

– Drive controlled by low-level commands

• Move head, select head, start transfer, etc.

– Controller translates request for physical block into
low-level commands

• Integrated Drive Electronics (IDE, Western Digital)

– Controller inside drive package handles low-level

details

– 40-wire parallel connector

– Evolved into AT Attachment (ATA, ANSI X3 std)

Disk Drive Interfaces

• ATA evolved through several stages
– ATAPI, 1998

– “Ultra DMA” transfer modes – required 80-wire cable

– 28-bit addressing (max addressable ~137 GB)
• ATA-6 went to 48-bit addressing (limit 144 petabytes)

• Serial ATA introduced in 2003
– Smaller, longer cables

– Hot-swappable

• Small Computer System Interface (SCSI)
– 1980’s – present

– More sophisticated interface – required more expensive
drive hardware

Example: IDE

40-pin connector:

 pin Name

 1 RESET

 2,19,22,24, GROUND

 26,30,40

 3-17 odd D7-D0 (low data byte)

 4-18 even D8-D15 (high data byte)

 20 [blocked; physical alignment]

 21 DDREQ (handshaking)

 27 IOCHRDY (handshaking)

 29 DDACK (handshaking)

Example: IDE

40-pin connector:

 pin Name

 23 WR (write control signal)

 25 RD (read control signal)

 28 ALE (?)

 31 IRQ (Interrupt Request)

 32 IO16 (8/16-bit control)

 35,33,36 A0,A1,A2 (Register select)

 34 DMA?

 37, 38 CS1, CS3 (Register select)

 39 ACTIVITY (“busy”)

IDE Drive Registers

• Data I/O (16 bits)

• Sector Counter (8 bits)

• Start Sector (8 bits – range = 1..256)

• Cylinder Low byte (8 bits)

• Cylinder High bits (2-8 bits – traditional IDE only
allows 1024 Cylinders

• Head and Device (8 bits)
• Selects Master/Slave drive

• Comand/Status register (8 bits)
• Different functions read/write

Example: Simple PIO Read

Example: Simple PIO Read

File Systems and Partitions

• File System = way of organizing data for storage
on disk

– Provides named file and named directory abstractions

– Examples: FAT-16, FAT-32, NTFS, Ext3, HPFS, ...

– To get useful information from a drive, need to

understand its file system organization

• A single physical drive may be partitioned

– Operating System treats it like multiple disk drives

– Why do this?

Master Boot Record

• First addressable block (LBA 0) on the disk
– Convention: Machines read this block first when

booting from disk

• Contains:
– Bootstrapping code (up to ~440 bytes)

– Partition table

– MBR Magic Number: 0x55, 0xAA

Partition Table

• By convention: exactly four entries

– Some may be unused

• Each entry tells:

– Addresses of first and last blocks in the file system

– Type of file system used in that partition (code #)

Partition Types

• No “official” assignment of types

– No guarantee that two different types don’t use the
same number!

• 0 = unused partition

• 04h, 06h = FAT

• 07h = NTFS or HPFS

• 83h = linux file system: ext2, ext3, reiserfs, ...

• 82h = linux swap space

• 05h or 0Fh = extended partition

Extended Partitions

• What if you want to have more than four
partitions on a physical disk?

• Solution: Use one entry (max) in the partition
table as an extended partition
– Specified like any other partition

– Type code 0x05 or 0x0e or 0x0f

– First sector in the partition contains another partition
table with two entries

• First entry describes one (the first) “logical” (sub)-partition in
the usual way (= start sector + length in sectors)

• Second entry is a “pointer” to the next partition table (0 if
there is none)

Extended Partition Example

(Note: this shows only the start and length fields of each
partition table entry)

Modern Partition Tables

• 232 sectors x 29 bytes/sector = 2 Terabytes
– Need bigger partition tables!

• Globally Unique ID (GUID) Partition Table (GPT)
– Part of Intel’s Extensible Firmware Interface (EFI) initiative

to replace the PC BIOS
– Many additional features besides bigger addresses

• drops CHS addressing altogether
• Checksum for detecting corruption
• Variable-sized partition tables
• Backup partition tables stored on disk
• GUID for each disk

• Still need a “Legacy MBR” PT in LBA 0
– Configured as a single partition, type 0xEE = GPT
– OS’s that know about GPT ignore size in Legacy MBR

File Systems

• What they provide:

– Higher-level abstractions: named files and directories

– Management of free space

– Hiding complexity of locating information on disk

• Principle: some of the “space” on the disk is

used up to provide these services

The “File” Abstraction

• File = named, finite, sequence of bytes

– Bytes encode information of some type (BG Part I)

• Name = sequence of characters

– Characters are encoded as bytes (of course)

– Name provides a (unique) identifier for the file

• Directory = special file that “contains” other files

– Creates a hierarchical structure: directory tree

– “Root” directory: entry point of tree

Program Access to File Data

Standard OS abstraction:
fd = open(“myFile.txt”,O_RDWR|O_CREAT);

rv = lseek(fd,1000000,SEEK_SET);

...

rv = write(fd,buffer,BUFSIZE);

...

rv = lseek(fd,0,SEEK_SET);

...

rv = read(fd,rbuf,BUFSIZE);

...

close(fd);

Program Access to File Data

OS has to:

– Remember that this program has “opened” the file

– Keep track of “current location” in the file

• Initially at beginning of file

• Can’t read past the end of the file!

File system has to:

– Find the data (disk sectors) associated with filename

– Locate and allocate new blocks as the file grows

– De-allocate and reclaim blocks belonging to deleted
files

Buffering

• Operating System keeps a pool of buffers
containing copies of some blocks in a file system

– Each buffer is a block of memory the same size as the

minimum-sized unit of disk allocation (typically: sector)

– OS keeps track of which block is in which buffer

– When a program needs to read block j, first check

whether a copy is already in a buffer
• If so: copy from the OS buffer into the program’s buffer

• If not: find a “free” buffer; send a request to the disk to read
the corresponding sector(s) into that buffer

Buffering

• Number of buffers << Number of sectors on
disk
– Need algorithm to decide which buffer to “evict” when

all are busy (typically: LRU)

• Writing to block j:
– First get the block into a buffer

– Write into the buffer in memory
• Disk not yet changed!

– Eventually, flush the buffer by writing its contents
back to (the appropriate block on the) disk

• Need algorithm to decide when to flush “dirty” buffers

How to do it?

• Information to be associated with filename:

– Data (zero or more disk sectors)

– ...

• The way this association is accomplished varies
with the file system type

• General Principle:

Directories associate file names with file information

File Allocation Table

• File System from Microsoft

– Dates from MS-DOS

– Often used on USB “Thumb drives”

– FAT12, FAT16, FAT32
• Evolved to deal with ever-larger drives

• Features like long filenames added (backward compatible)

• Primitive, not terribly efficient

General FAT Principles

• Data is allocated in clusters, which consist of 2k
sectors, where k = 0, 1, 2, 3, 4, 5, 6, or 7

– k is fixed for the entire filesystem

– Sectors are almost always 512 bytes, but in theory
could be otherwise

• Example: for k=6, the smallest nonempty file uses 32KB

– As the file grows, more clusters are allocated

• Disk volume (partition) divided into FAT and data

(cluster) areas

FAT: Chaining Clusters

FAT Contents

• Each entry in the FAT table is a 12-, 16- or 32-
bit number (depending on type)

• Possible values:

– 0: denotes a free cluster

– FFF, FFFF, 0FFFFFFF: End-of-Chain mark

– FF7, FFF7, 0FFFFFF7: Bad Cluster mark (not used)
• Note: no FAT32 volume should ever be configured so that

FFFFFF7 is an allocatable cluster number

• Note: No list of free clusters is stored (!)

– To find a free cluster, scan list until finding a 0 entry

Directory Entry– Short Filenames

• Designed for MS-DOS “8+3” filenames
– E.g. EVIDENCE.TXT, COMMAND.COM, WINDOWS.EXE, etc.

• Directory Entry: 32-byte structure:
Name 11 bytes // “dot” is implicit, both parts padded

 // Name[0] = 0xE5 means “free”

Attr 1 byte // Bit flags: readonly, sys, etc.

Rsvd 1 byte // Reserved for NT

CreatTimeTenth 2 bytes // Tenths part of create time

CreateDate 2 bytes // Date created

LastAccessDate 2 bytes // Date of last access

FirstClusterHi 2 bytes // 1st cluster index, high word

WriteTime 2 bytes // Time last written

WriteDate 2 bytes // Date last written

FirstClusterLo 2 bytes // 1st cluster index, low word

FileSize 4 bytes // size in bytes

Short Directory Entry Examples

 “foo.bar” FOO BAR (=space)

 “FOO.BAR” FOO BAR

 “Foo.Bar” FOO BAR

 “foo” FOO

 “foo.” FOO

 “pickle.a” PICKLE A

 “prettybg.big” PRETTYBGBIG

 “.tar” (illegal: Name[0] cannot be 20h=space)

Short Directory Entry

• Letters, digits, and other characters with code points
greater than 127 (e.g., Japanese)
– Space (20h) is allowed (in the “8” part)

• Always mapped to upper case
– This is problematic for some charsets!

• Name[0]=E5h indicates free entry
– Name[0] = 0 indicates free and all subsequent entries are

free
– Hack: E5h is a valid Japanese character; use 05h instead

• Max path length: 80 characters
– includes trailing null

– 64 path + 3 drive letter + 11 + 1 = 79 (?)

Supporting Long Filenames

• Goal: Support more general filenames
– up to 255 characters

– larger character sets (Unicode – 2 bytes/char)

• In a backward-compatible fashion
– Must not confuse older disk-checking programs

• They use raw device access

• Must not jeopardize integrity of existing file data

• Basic idea: use multiple 32-byte entries to store long
filenames
– Combination of attribute flags indicates long entry

RDONLY, HIDDEN, SYSTEM, VOLUME_ID

– Each entry looks (more or less) like a valid short entry to
legacy software

Long Filenames: Principles

• For each file with a long name, there is a regular
(short) entry containing a unique, automatically-
generated short filename to which the long name
maps
– e.g. PROGRA~1.EXE

• Auto-generated short names are unique

• The long name and corresponding short name are
stored in a contiguous sequence of 32-byte directory
entries

• Case is not distinguished in long names
– Cannot create foobar if FooBar exists, even with long

names

Long Name Directory Entry

Long Name Directory Entry

• Directory Entry: 32-byte structure:
Ordinal 1 byte // This is the Nth dir entry

Name1 10 bytes // First 5 chars (unicode)

Attributes 1 byte // Always RDONLY|HIDDEN|SYSTEM|VOL_ID

Type 1 byte // 0 means part of long name

Checksum 2 bytes // f(short name)

Name2 10 bytes // Next 5 chars of name

FirstClusterLow 2 bytes // Always 0

Name3 4 bytes // Next 2 chars of name

The Big FAT Picture

Where’s the Root?

• To find a file’s directory entry from its pathname:

– Recursively search directories for components of
pathname, starting from root

– Final component is filename

• Must be able to find the information for the root
directory

– FAT12, FAT16:

• Root directory immediately follows the FAT

• Size (# of entries) contained in BPB

BIOS Parameter Block
(Common)

 Field Name Size (bytes) Comment
 jmpBoot 3 // always EB, ??, 90 or

 // E9, ??, ??
 OEMName 8 // “MSWIN4.1” typical

 BytesPerSector 2 // 512, 1024, 2048 or 4096
 SectorsPerCluster 1 // 1, 2, 4, 8, 16, 32, 64, or 128
 ReservedSecCount 2 // size of Reserved Region

 // should be 1 (12,16)
 NumFATs 1 // should be 1 or 2

 RootEntryCount 2 // Size of Root Region(12,16)
 // must be 0 for (32)
 TotalSectorsCount 16 2 // total # of sectors or 0 (32)

 FATSize16 2 // #sectors used for FAT (12,16)
 ...

 FATSize32 4 //#sectors for FAT (32)

BIOS Parameter Block
FAT12, FAT16

 Field Name Size (bytes) Comment

 BootSig 1 // always 29h

 VolumeID 4 // Serial Number

 VolumeLabel 11 // Matches label in root dir

 FileSysType 8 // “FAT12 ” or

 // “FAT16 ” or

 // “FAT ”

BIOS Parameter Block
FAT32

 Field Name Size (bytes) Comment

 FATSize32 4 // size of FAT in sectors

 ExtFlags 2 // blah

 FSVersion 2 // minor, major

 RootCluster 4 // First cluster of Root dir

 FSInfo 2

 BkBootSect 2 // loc. of bk-up boot sec (usu 6)

 ...

 VolumeID 4

 VolumeLabel 11 // same as before

 FileSysType 8 // Always “FAT32 ”

Is it FAT12, FAT16, or FAT32?

• RootDirSectors = ((RootEntryCount * 32) +
 (BytesPerSec – 1)) / BytesPerSec;

• DataSectors = TotalSectors –

 (ReservedSecCount + (NumFATs * FATSize) +
 RootDirSectors)

• ClusterCount = DataSectors/SectorsPerCluster

• If (ClusterCount < 4085) FAT12

 else if (ClusterCount < 65525) FAT16

 else FAT 32

Tools for Examining Disks

Warning! In general it is not “safe” to plug a drive
that you want to preserve into a Windows (or
any other) system

– If automounted, FS info may be altered

– “Autorun” code may be started ...

Having said that...

 You may not have a choice if you don’t have a
write-blocker.

 (Why write-blockers are a great idea!)

Tools for Examining Disks

• Device Files
– Most systems have pseudo-files that provide block-

level access to each drive/partition
• MacOS: /dev/disk0 = entire drive

 /dev/disk0s1 = first partition

 /dev/disk0s2 = second partition ...

– File systems are mounted from these pseudo-files

• Raw Device
– Treats entire drive as linear sequence of uninterpreted

bytes
• Read 512 bytes starting at offset 0 Master Boot Record

– Names prefixed with “r”, e.g. /dev/disk0 /dev/
rdisk0

Tools for Examining Disks

• fdisk: partitioning tool

• dd: disk-to-disk copy

– Reads blocks of bytes from input file, writes to output
file

– Suitable for block-by-block copying from raw device

• Can be used to make an “image file” of a drive

• Note: to be safe, engage write lock

• diskutil (MacOS)

• fsck, fsdb – old Unix file system utilities

Unix File System

• Based on the original Bell Labs Unix file system

– Developed at Berkeley in the late 1980’s

– Refinements to make it more efficient for larger files

and file systems

– AKA “UFS”, “FFS”, “Berkeley Fast File System”

• Pre-LBA

– Attempts to reduce the amount of arm movement

– Reduces amount of space wasted due to breakage

• That is: using only a small part of a large cluster

Unix Filesystem

• Inode: fixed-size structure; repository of all
meta-information associated with a file
– Locations of data blocks

– File size in bytes

– Owner, group UIDs

– Access control information (permissions)
• Bitmap: (Owner, Group, World) x (read, write, execute)

• Additional: “sticky” bit, setuid, setgid

– Creation, Modification, Access times

– Link count (number of names for this file)

• Directories contain (name, inode #) pairs

Storing Data Block Locations

Inode contains an array of 15 LBAs
– 12 Direct – the blocks referenced contain data
– 1 indirect, 1 doubly-indirect, and 1 triply-indirect

Traditional Unix File System

• Superblock

– Contains meta-information for the file system
• Similar to the BPB in FAT

– Blocksize, number of inodes, etc.

– “Cylinder group” locations
• Idea: put inode and file data close to each other on disk;

avoid seeking!

– Locations of backup superblock copies (blocks in data
area)

– Root directory inode pointer, free block bitmap

FFS Features

(These are shared by all modern file systems,
including NTFS)

• Multiple names for the same file/directory
– More than one directory entry can have the same

inode in it

– All of the names have exactly the same status

– When the link count in the inode goes to zero, OS
frees the inode and associated resources.

• “Symbolic link” – a special file that contains a
pathname (= pointer to another file)
– Creates the possibility of dangling pointers

FFS Features

• File Locking: file system provides exclusive
access (via OS API!) to file data

