Chapter 4 Network Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we' d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

CAll material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7,different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table
 - If no matching table entry, drop the datagram!

Network Layer 4-5

- I6-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - Routers should only process up to layer 3
 - Violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - Address shortage should instead be solved by IPv6
- * BUT: NAT provides a measure of security for most home networks (why?)

NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- solution I: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000
 - Ugly: most folks don't know how to do this

NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)
 - i.e., automate static NAT port map configuration

NAT traversal problem

solution 3: relaying (used in Skype)

- NATed client establishes connection to relay
- external client connects to relay
- relay bridges packets between to connections
- ugly: skype knows where/when you are

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Туре	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP
 "port unreachable"
 message (type 3, code 3)
- source stops

Network Layer 4-12

Exercise: Path MTU Discovery

MTU = "Maximum Transmission Unit"

- Size of largest datagram that can be transmitted over a channel (e.g., Ethernet is 1500 bytes, WiFi is 7981)
- Given the ICMP message types, and what you know about IP's fragmentation function, devise a procedure to determine the "Path MTU", i.e., the smallest MTU along a path from source to destination

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined). next header: identify upper layer protocol for data

ver	pri	flow label					
	bayload	llen	next hdr	hop limit			
	source address (128 bits)						
destination address (128 bits) data							
							• 32 bits

Network Layer 4-15

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Interplay between routing, forwarding

Exercise: Routing Algorithms

Imagine that you are routers

- Each of your interfaces is connected to a network
- Each network has an IP network number (prefix)
- * You already know:
 - Your own interfaces' IP addresses
 - The prefixes assigned to your attached networks
- How will you (routers) work together to construct a forwarding table at each router containing an entry for every attached network?

