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Abstract

Trained indexers at the National Library of Medicine (NLM) manually tag each biomedical
abstract with the most suitable terms from the Medical Subject Headings (MeSH) termi-
nology to be indexed by their PubMed information system. MeSH has over 26,000 terms
and indexers look at each article’s full text while assigning the terms. Recent automated
attempts focused on using the article title and abstract text to identify MeSH terms for
the corresponding article. Most of these approaches used supervised machine learning tech-
niques that use already indexed articles and the corresponding MeSH terms. In this paper,
we present a new indexing approach that leverages term co-occurrence frequencies and latent
term associations computed using MeSH term sets corresponding to a set of nearly 18 million
articles already indexed with MeSH terms by indexers at NLM. The main goal of our study
is to gauge the potential of output label co-occurrences, latent associations, and relationships
extracted from free text in both unsupervised and supervised indexing approaches. In this
paper, using a novel and purely unsupervised approach, we achieve a micro F-score that is
comparable to those obtained using supervised machine learning techniques. By incorporat-
ing term co-occurrence and latent association features into a supervised learning framework,
we also improve over the best results published on two public datasets.

1. Introduction

Indexing biomedical articles is an important task that has a significant impact on how
researchers search and retrieve relevant information. This is especially essential given the
exponential growth of biomedical articles indexed by PubMed R©, the main search system
developed and maintained by the National Center for Biotechnology Information (NCBI).
PubMed lets users search over 22 million biomedical citations available in the MEDLINE
bibliographic database curated by the National Library of Medicine (NLM) from over 5000
leading biomedical journals in the world. To keep up with the explosion of information on
various topics, users depend on search tasks involving Medical Subject Headings (MeSH R©)
that are assigned to each biomedical article. MeSH is a controlled hierarchical vocabulary
of medical subjects created by the NLM. Once articles are indexed with MeSH terms, users
can quickly search for articles that pertain to a specific subject of interest instead of relying
solely on key word based searches.



Since MeSH terms are assigned by librarians who look at the full text of an article, they
capture the semantic content of an article that cannot easily be captured by key word or
phrase searches. Thus assigning MeSH terms to articles is a routine task for the indexing
staff at NLM. The manual indexing task is observed to consume a significant amount of time
leading to delays in the availability of indexed articles. It is is observed that it takes about
90 days to complete 75% of the citation assignment for new articles [1]. Moreover, manual
indexing is also a fiscally expensive initiative [2]. Due to these reasons, there have been
many recent efforts to come up with automatic ways of assigning MeSH terms for indexing
biomedical articles. However, automated efforts (including our current work) mostly focused
on predicting MeSH terms for indexing based solely on the abstract and title text (henceforth
referred to as ‘citation’) of an article. This is because most full text articles are only available
based on paid licenses not subscribed by many researchers. Furthermore, it was found that
using full text adds additional complexity requiring a careful selection of particular sections
and was found to have limited utility [3].

Many efforts in MeSH term prediction generally rely on two different methods. The first
method is the k-nearest neighbor (k-NN) approach. In this approach, first, k citations whose
corresponding articles are already tagged with MeSH terms and whose content is found to be
“closest” to the citation of the new article to be indexed, are obtained. The MeSH terms from
these k citations form a set of candidate terms for the new citation. The candidate terms are
ranked by according to certain criteria and the top ranked terms constitute the predicted set
for the new citation. A second method is based on applying machine learning algorithms to
learn binary classifiers for each MeSH term. A new citation would then be put through all
the classifiers and the corresponding MeSH terms of classifiers that return a positive response
are chosen as the indexed terms for the abstract. An additional ranking mechanism may be
imposed if too many classifiers return a ‘yes’ answer. We note that both k-NN and machine
learning approaches need large sets of citations and the corresponding MeSH terms to make
predictions for new abstracts. On the other hand unsupervised approaches do not need
any training data but in general do not achieve performance comparable with supervised
approaches. In this paper,

1. We first propose a new unsupervised ensemble method1 that uses named entity recog-
nition (NER), relationship extraction, knowledge-based graph mining, and output la-
bel co-occurrence statistics to extract MeSH terms. Prior attempts have used NER,
relationship extraction, and graph mining approaches as part of their supervised ap-
proaches and we believe this is the first time output term co-occurrences are applied
for MeSH term extraction. We achieve a micro F-score that is comparable to those
that employ a k-NN based strategy on two public datasets.

2. We adapt our methods from the unsupervised framework to a supervised k-NN and
learning-to-rank [5] based framework by additionally introducing latent term associa-
tions computed using reflective random indexing [6] to term sets. We show that this
results in better precision, recall, F-score, and mean average precision (MAP) over the
best published results at the time of this writing on two public datasets.

1The main method in this portion of the paper has first appeared in our conference paper [4]. However,
some modifications have been incorporated in this extension based on reviewer suggestions.
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Before we continue, we would like to emphasize that automatic indexing attempts, in-
cluding our current attempt, are generally not intended to replace trained indexers but are
mainly motivated to expedite the indexing process and increase the productivity of the in-
dexing initiative at the NLM. Hence in these cases, recall might be more important than
precision although an acceptable trade-off is necessary. In the rest of the paper, we first
discuss MeSH background, related work in MeSH term prediction, and also the context of
our paper in Section 2. We briefly discuss the two public datasets used and present the mea-
sures used for evaluation in Section 3. In Section 4, we start out by introducing the unified
medical language system (UMLS), biomedical NER, semantic predications (relations) and
finally build on these to present our novel unsupervised MeSH term extraction method with
the corresponding evaluation. Section 5 outlines the k-NN and learning-to-rank approaches
employed for supervised prediction. In this section, we also give an overview of a specific
variant of reflective random indexing used to compute latent inter-term associations. Finally,
we formally specify all the features used in learning a function that ranks the candidate terms
and evaluate the resultant predictions.

2. Background and Related Work

MeSH is a hierarchical terminology whose main application is indexing biomedical arti-
cles. Hence strict notions of meronymy were not used in its design; the hierarchical relation-
ships are actually guided by “aboutness” of a child to its parent. Hence a term could be a
descent of multiple other terms whose least common consumer is not one of them. That is,
a term could have multiple paths from the root.

NLM initiated efforts in MeSH term extraction with their Medical Text Indexer (MTI)
program that uses a combination of k-NN based approach and NER based approaches with
other unsupervised clustering and ranking heuristics in a pipeline [7]. MTI recommends
MeSH terms for NLM indexers to assist in their efforts to expedite the indexing process2.
Another recent approach by Huang et al. [1] uses k-NN approach to obtain candidate MeSH
terms from a set of k already indexed articles and use the learning-to-rank approach to learn
a ranking functions that ranks these candidate terms. They use two different datasets one
with 200 citations and the other with 1000 citations, which are also used for our experiments
in this paper.

Several other efforts employed machine learning approaches with novel feature selec-
tion [8] and training data sample selection [9] techniques. Vasuki and Cohen [10] use an
interesting approach that employs reflective random indexing to find the nearest neighbors
in the training dataset and use the indexing based similarity scores to rank the terms from
the neighboring citations. A recent effort by Jimeno-Yepes et al. [11] uses a large dataset and
uses meta-learning to train custom binary classifiers for each MeSH term and index the best
performing model for each terml for usage on new testing citations; we request the reader to
refer to their work for a recent review of machine learning approaches used for MeSH term
assignment.

2For the full architecture of MTI’s processing flow, please see: http://skr.nlm.nih.gov/resource/

Medical_Text_Indexer_Processing_Flow.pdf
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As mentioned in Section 1, most current approaches rely on large amounts of training
data. We first take a purely unsupervised approach under the assumption that we have
access to output term sets where training citations may not be available. We then adapt
our methods and also add an additional random indexing component to a learning-to-rank
framework to achieve better results on two public datasets.

3. Datasets and Evaluation Metrics

Before we go into the details of our methods, we briefly present the datasets used in
experiments and establish notation used for evaluation measures. Essentially, each testing
dataset citation will have an associated set of correct MeSH terms it is assigned and our
goal is to automatically predict a set of MeSH terms from title and abstract that best
matches the correct set of terms. We experiment with two public datasets used by Huang
et al. [1]. The NLM2007 dataset has 200 test citations and is used by other recent studies
on this subject [10]. The L1000 dataset is curated by Huang et al. by random selection for
the purposes of their work to test their methods on a larger dataset that spanned a large
number of years. Both datasets can be obtained from the NLM website: http://www.ncbi.
nlm.nih.gov/CBBresearch/Lu/indexing/paperdat.zip.

Next we discuss the standard evaluation measures used when discussing multi-label clas-
sification results. We chose to present them here because of the layout of the paper, where
results of unsupervised and supervised methods are discussed separately for the purposes of
clarity. Let L be the set of all biomedical citations to be assigned MeSH terms; Let Ei and
Gi, i = 1, . . . , |L|, be the set of predicted MeSH terms using our methods from the PubMed
citations (here, abstract and title fields) and the corresponding correct gold standard terms,
respectively, for the i-th citation. Since the task of assigning multiple terms to a citation is
the multi-label classification problem, there are multiple complementary methods for eval-
uating automatic approaches for this task. Since these are relatively smaller datasets with
very few citations per label, we use micro precision, micro recall, and micro F-score used by
Huang et al [1]. The average micro precision Pµ and micro recall Rµ are

Pµ =

∑
Li∈L c(N,Li, Ei)

|L| ·N
and Rµ =

∑
Li∈L c(N,Li, Ei)∑|L|

i=1 |Gi|
,

where c(N,Li, Ei) is the number of true positives (correct gold standard terms) in the top
N ranked list of candidate terms in Ei for citation Li. Given this, the micro F-score is
Fµ = 2PµRµ/(Pµ + Rµ). We also define average precision of a citation AP(Li) computed
considering top N terms as

AP(Li, N) =
1

|Gi|

N∑
r=1

I(Er
i ) ·

c(r,Li, Ei)

r
,

where Er
i is the r-th ranked term in the set of predicted terms Ei for citation Li and the

function I(Er
i ) is a Boolean function with a value of 1 if Er

i ∈ Gi and 0 otherwise. Finally,
the mean average precision (MAP) of the collection of citations L when considering top N
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predicted terms is given by

MAP(L, N) =
1

|L|
∑
Li∈L

AP(Li, N).

For more details of various other relevant measures and their optimization strategies we
encourage the readers to refer to well known surveys [12, 13].

4. Unsupervised MeSH Term Extraction

This section details our unsupervised approach to MeSH term prediction using semantic
features and output term co-occurrences. We first use a combination of NER, knowledge-
based graph mining, and output label co-occurrence frequencies to predict a set of candidate
MeSH terms. We then use semantic predications to rank the candidates and also use the
traditional Borda rank aggregation to merge various ranked lists of the candidate set into a
final ranking. Next, we elaborate on the specifics of each of the components of our approach
before discussing the candidate generation. We first discuss the UMLS, a biomedical knowl-
edge base used in NER, a graph mining method to enhance NER output, and extraction of
semantic predications from free text.

4.1. Unified Medical Language System (UMLS)

The UMLS3 is a large domain expert driven aggregation of over 160 biomedical termi-
nologies and standards. It functions as a comprehensive knowledge base and facilitates inter-
operability between information systems that deal with biomedical terms. It has three main
components: Metathesaurus, Semantic Network, and SPECIALIST lexicon. The Metathe-
saurus has terms and codes, henceforth called concepts, from different terminologies. Biomed-
ical terms from different vocabularies that are deemed synonymous by domain experts are
mapped to the same Concept Unique Identifier (CUI) in the Metathesaurus. The semantic
network acts as a typing system that is organized as a hierarchy with 133 semantic types such
as disease or syndrome, pharmacologic substance, or diagnostic procedure. It also captures
54 important relations (called semantic relations) between biomedical entities in the form of
a relation hierarchy with relations such as treats, causes, and indicates. The Metathesaurus
currently has about 2.9 million concepts with more than 12 million relationships connect-
ing these concepts. The relationships take the form C1 → rel-type → C2 where C1 and
C2 are concepts in the UMLS and rel-type is a semantic relation such as treats, causes, or
interacts. The semantic interpretation of these relationships (also called triples) is that the
C1 is related to C2 via the relation rel-type. The SPECIALIST lexicon is useful for lexical
processing and variant generation of different biomedical terms.

4.2. Named Entity Recognition: MetaMap

NER is a well known application of natural language processing (NLP) techniques where
different entities of interest such as people, locations, and institutions are automatically
recognized from mentions in free text (see [14] for a survey). NER in biomedical text is

3UMLS Reference Manual: http://www.ncbi.nlm.nih.gov/books/NBK9676/
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difficult because linguistic features that are normally useful (e.g., upper case first letter,
prepositions before an entity) in identifying generic named entities are not useful when
identifying biomedical named entities, several of which are not proper nouns. Hence, NER
systems in biomedicine rely on expert curated lexicons and thesauri. In this work, we
use MetaMap [15], a biomedical NER system developed by researchers at the NLM. So
as the first step in identifying MeSH terms for a given abstract, we extract non-negated
biomedical named entities by running MetaMap on the abstract text using MetaMap’s ability
to identify negated terms. Once we obtain non-negated UMLS concepts using MetaMap
from the abstract and title text, we convert these concepts to MeSH terms, when possible.
Specifically, we first note that MeSH is one of the source vocabularies integrated into the
UMLS Metathesaurus. As such, concepts in MeSH also have a unique identifier (or CUI) in
the Metathesaurus. As part of its output, for each concept, MetaMap also gives the source
vocabulary. So, the concepts from MetaMap with source vocabulary MeSH finally become
the set of extracted ‘candidate’ terms for each citation. However, these MeSH term sets
may not be complete because of missing relationships between UMLS concepts. That is, in
our experience, although MetaMap identifies a medical subject heading, it might not always
map it to a CUI associated with a MeSH term; it might map it to some other terminology
different from MeSH, in which case we miss a potential MeSH term because the UMLS
mapping is incomplete. We deal with this problem and explore a graph based approach in
the next section. We also note that just because a MeSH term appears in a citation, it may
not be the case that the citation should be assigned that term (more on this later).

4.3. UMLS Knowledge-Based Graph Mining

As discussed in Section 4.2, the NER approach might result in poor recall because of lack
of completeness in capturing synonymy in the UMLS. However, using the UMLS graph with
CUIs as nodes and the inter-concept relationships connected by relationship types parent
and rel broad as edges (high level relationship types in UMLS), we can map a original CUI
without an associated MeSH term to a CUI with an associated MeSH term. The parent
relationship means that concept C1 has C2 as a parent. The rel broad type means that
C1 represents a broader concept than C2. We use a simplified version of the algorithm
originally proposed by Bodenreider et al. [16] for this purpose. Here, we map a CUI c
output by MetaMap that is not associated with a MeSH term to the set of all MeSH terms
whose corresponding CUIs in the UMLS are ancestors of c using the parent or rel broad
edges. Intuitively, by capturing all one-hop MeSH terms that are semantically broader
compared with the CUIs extracted by MetaMap, we are accounting for MeSH terms that have
more specific concepts (in the UMLS), which are more likely to be identified by MetaMap.
Although the original algorithm [16] captures terms at longer distances, we did not find it
particularly useful for our current purpose [4].

4.4. Candidate Set Expansion Using Output Label Co-Occurrences

Using NER and graph-based mining discussed in Sections 4.2 and 4.3, we obtain a pool of
candidate MeSH terms. However, note that the trained coders will look at the full text when
assigning MeSH terms. Thus, merely looking for terms mentioned in the title and abstract
may not be sufficient. To further expand the pool of candidate terms, we propose to exploit
the frequencies of term co-occurrences as noticed in already indexed articles. To elaborate,
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note we already have nearly 22 million articles that are manually assigned MeSH terms.
Hence we can determine the number of times different term pairs co-occur and represent
those frequencies in a matrix where both rows and columns are all possible MeSH terms
(nearly 26,000). Before we go into specific details, we give a high level overview of our
unsupervised approach that exploits output term co-occurrences. Intuitively, given a MeSH
term that we already know with high confidence should be assigned to a particular citation,
other terms that frequently co-occur with this high confidence term might also make good
candidates for the input citation. However,

1. there might be many highly co-occurrent terms; high co-occurrence does not necessarily
mean that the new term is relevant in the context of the current citation that is being
assigned MeSH terms. To address this, we propose to model the context using MeSH
terms extracted from title and abstract using NER and graph-mining (Sections 4.2
and 4.3). We still need a way of applying this context to separate highly co-occurrent
terms that are also relevant for the current citation.

2. Furthermore, we also need an initial seed set of high confidence candidate terms to
exploit the term co-occurrences. We propose to use, again, the MeSH terms extracted
from title and abstract using NER and graph-mining. The title MeSH terms are
directly included in the seed set of candidate terms. However, the terms extracted
using NER from the abstract are subject to the context (as indicated in the first step)
and are only included in the seed set if they are still deemed relevant after applying
the context4.

Given the outline explained thus far, next we present specifics of how the highly co-
occurrent terms are obtained from the seed set and how the context terms (that is, MeSH
terms from title and abstract) are used to select a few highly co-occurrent terms that are
also contextually relevant for the current article to be indexed. Before we proceed, as a
pre-processing step, we build a two dimensional matrix5 M of row-normalized term co-
occurrence frequencies where both rows and columns are all possible MeSH terms and the
cells are defined as

M[i][j] =
number of articles assigned both i-th and j-th MeSH terms

number of articles assigned the i-th term
. (1)

M[i][i] = 1 because the numerator would be equal to the denominator. We note with
this definition of M[i][j] is an estimate of the probability P (j-th term|i-th term). Let T
and A be the set of title and abstract MeSH terms extracted using NER, respectively, and
C = T ∪A be the set of context terms which includes the MeSH terms extracted from both
title and abstract. Let α and β be the thresholds used to identify highly co-occurrent terms
and to select a few of these terms that are also contextually relevant, respectively; details of
these thresholds will be made clear later in this section. Next we present the pseudocode of
candidate term expansion algorithm.

4This is needed because MeSH terms that are mentioned in the abstract may not be relevant to the
article. An example situation is when a list of diseases is mentioned in the abstract although the article is
not about any of them but about the biology of a particular protein that was implicated in all those diseases

5We used the Compressed Sparse Row matrix class from the SciPy Python package to efficiently represent
and access the 26582× 26582 matrix
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Algorithm Expand-Candidate-Terms (T ,A, α, β,M[ ][ ])

1: Initialize seed list S = T
2: Set context terms C = T ∪ A
3: S.append(Apply-Context(A, β, C,M[ ][ ]))
{Next, we iterate over terms in list S}

4: for all terms t in S do
5: Let H = [ ] be an empty list
6: for each i such that M[t][i] > α do
7: H.append(i-th MeSH term)
8: relevantTerms = Apply-Context(H, β, C,M[ ][ ])
9: relavantTerms = relevantTerms− S {avoid adding existing terms}

10: S.append(relevantTerms)
11: return S

Procedure Apply-Context (H, β, C,M[ ][ ])

1: for all candidate terms t in H do
2: Set co-occurrence score F = 0
3: for each context term c in C do
4: F = F +M[c][t]
5: if F/|C| < β then
6: H.delete(t) {F/|C| is the average co-occurrence}
7: return H

First, we discuss the Expand-Candidate-Terms algorithm. It takes the title and abstract
MeSH terms as input and also the thresholds α (to extract terms that highly co-occur with
the seed terms) and β (to apply context and prune the expanded set of terms). We initialize
the seed set to be just the title terms (line 1). In line 3, we add to the seed set, abstract
terms that have an average co-occurrence score ≥ β with the context terms. In lines 4–10,
we expand the seed set to add new candidate terms. For each seed term t considered in the
for loop on line 4, we curate a list of highly co-occurrent terms according to the term pair
co-occurrence matrix (lines 6–7). We then prune this list of terms based on their average
co-occurrence with context terms by calling Apply-Context in line 8. To ensure termination
and avoid looking at terms that we have already expanded, we only append terms that are
not already in S (lines 9–10).

In the Apply-Context procedure, we add the co-occurrence scores of each term in the
list H with all terms in the context term set C (lines 3–4). We delete all terms from H
that have an average co-occurrence less than β. In our experiments, 0.03 ≤ β ≤ 0.05 and
0.06 ≤ α ≤ 0.1 proved to be best ranges for the thresholds. Using very low thresholds will
increase the size of the expanded candidate set output by Expand-Candidate-Terms (line
11). Given this expanded candidate set, we rank its terms to retain only the top few; in
our experiments, the candidate sets were found to have anywhere between 25 and 200 terms
while the label cardinality of our datasets is less than 15.
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4.5. Ranking Approaches and Semantic Predications

In this section, we explore different unsupervised ranking approaches to rank the resulting
candidate MeSH terms obtained using the methods from Section 4.4. A straightforward
method we use is to rank them based on the average co-occurrence score computed in line
5 (F/|C|) of the procedure Apply-Context from Section 4.4; a second approach we follow
is to rank by the number of context terms in C with which the candidate term has a co-
occurrence value ≥ the average co-occurrence on line 5. That is the number of terms c
such that M[c][t] ≥ F/|C| in Apply-Context. Both these approaches are based on our
co-occurrence frequency based methods.

We also experiment with a novel binning approach using binary relationships (popularly
called semantic predications) extracted from the abstract text using the SemRep, a rela-
tionship extraction program developed by Thomas Rindflesch [17] and team at the NLM.
Semantic predications are of the form C1 → rel-type → C2 (e.g., Tomoxifen → treats →
Breast Cancer) introduced in Section 4.1 where C1 and C2 are referred to as the ‘subject’
and ‘object’ of the predication, respectively. However, predications come from the sentences
in the abstract text instead of the UMLS source vocabularies. The intuition is that entities
C1 and C2 that participate as components of binary relationships should be ranked higher
than those that do not participate in any such relationship. By virtue of participating in such
a relationship asserted in one of the sentences of the abstract text, we believe they garner
more importance as opposed to just being mentioned in a list of things in the introductory
sentences of an abstract. Thus we divide the set of candidate terms from Section 4.4 into two
bins. The first bin contains those MeSH terms that participate as a subject or an object of
a semantic predication extracted from the text. The second bin consists of those candidate
terms that did not occur as either a subject or an object of some predication. Terms in the
first bin are always ranked higher than terms in the second bin. Within each bin, terms are
ranked according to their average co-occurrence score or according to the number of context
terms with which the candidate term has co-occurrence greater than or equal to the average.
We also subdivided each main bin into two sub-bins where the first sub-bin consists of those
terms that are extracted from the abstract (using NER) and the second that consists of only
those terms that were extracted using the co-occurrence statistics. Again, ranking within
sub-bins is based on scores resulting from the co-occurrence based expansion algorithms.
Finally we use Borda’s [18] positional rank aggregation method to aggregate different full
rankings produced by purely co-occurrence based scoring methods and bin-based scoring
methods. In all these approaches, ties are broken using the average co-occurrence score and
the rare ties where these scores are equal are broken by maintaining the original order in
which terms are added in the expansion algorithm.

Remark 4.1. We also curated a small set of generic MeSH terms that had very low precision
when our methods were applied on the NLM200 dataset. These terms were mostly non-
specific in nature such as Diagnosis, Patients, and Genes, and included some check-tags6.
We applied a discount to the average contextual scores of such terms if they were found in
the candidate terms for the L1000 dataset.

6Check-tags are a special small set of MeSH terms that are always checked by trained indexers for all
articles. Here is the full check tag list: http://www.nlm.nih.gov/bsd/indexing/training/CHK_010.htm
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Remark 4.2. Suitable parameters α and β were obtained using an exhaustive combinatorial
search on parameter settings to maximize the MAP for the NLM200 dataset with increments
of 0.01 (for both α and β) in combination with different ranking schemes and values of N ,
the cut-off threshold for number of terms. We recall that lower values of α and β bias the
results toward high recall and low precision outcomes.

4.6. Results and Discussion

In this section, we discuss the results of the unsupervised ensemble approach outlined in
Sections 4.4 and 4.5 using measures introduced in Section 3. Before we proceed with our
results, we would like to point out that although we term our approach unsupervised, we note
that it heavily relies on the output term sets. We call our approach unsupervised in the sense
that we do not need any mappings from a biomedical citation to the corresponding MeSH
terms. However, such mappings are essential in conventional binary relevance approaches to
multi-label classification or in instance based learning approaches such as the k-NN approach
where given an instance the mapping between its neighbors and their corresponding MeSH
term sets is needed.

We first present our best micro average precision, micro recall, micro F-score, and MAP
in Table 1 in comparison with the results obtained by supervised ranking method by Huang
et al. [1] and the results obtained when using NLM’s MTI program (as reported by Huang et
al. in their paper). From the table we see that the performance of our unsupervised methods
is comparable (except in the case of the MAP measure) to that of the MTI method, which
uses a k-NN approach. However, as can be seen, a supervised ranking approach that relies
on training data and uses the k-NN approach performs much better than our approaches.
We emphasize that our primary goal in this section has been to demonstrate the potential
of unsupervised approaches that can complement supervised approaches when training data
is available but can work with reasonable performance even when training data is scarce or
unavailable, which is often the case in many biomedical applications.

Table 1: Comparison of micro measures with N = 25

Method
NLM2007 dataset L1000 dataset

Rµ Pµ Fµ MAP Rµ Pµ Fµ MAP

Our method 0.54 0.32 0.40 0.36 0.56 0.29 0.38 0.38

MTI 0.57 0.31 0.40 0.45 0.58 0.30 0.39 0.46

Huang et al. 0.71 0.39 0.50 0.62 0.71 0.34 0.46 0.61

Next we contrast the performance of our unsupervised methods involving co-occurrence
statistics and semantic predication based ranking approaches with some baseline methods
that only use NER and graph-mining based approaches in Table 2; we do not show MAP
values because the baseline approaches do not involve a ranking scheme. We see that graph-
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mining approach did not increase recall by more than 2%7. However, our co-occurrence based
candidate term expansion (Section 4.4) improved the recall by 18% in both the NLM2007
and L1000 datasets with an increase in precision of at least 10% and an increase in F-score
of at least 14%. This shows that using simplistic approaches that rely only on NER may not
provide reasonable performance.

Table 2: Comparison with baseline measures

Method
NLM2007 dataset L1000 dataset

Rµ Pµ Fµ Rµ Pµ Fµ

Our method 0.54 0.32 0.40 0.56 0.29 0.38

NER only 0.35 0.20 0.25 0.36 0.19 0.25

NER+graph-mining 0.36 0.19 0.25 0.38 0.18 0.24

Whether using unsupervised or supervised approaches, fine tuning the parameters is
always an important task. Next, we discuss how different thresholds (α and β in Section 4.4)
and different values of N affect the performance measures. We believe this is important
because low values for thresholds and high cut-off values for N have the potential to increase
recall by trading off some precision. We experimented with different threshold ranges for α
and β and also different values of N . We show some interesting combinations we observed
for the L1000 dataset in Table 3. We gained a recall of 1% by changing N from 25 to
35 with the same thresholds. Lowering the thresholds with N = 35 leads to a 5% gain
in recall with an equivalent decrease in precision, which decreases the F-score by 5% while
increasing the MAP score by 1%. Recall that we fine tune the parameter values and select
the best rank aggregation scheme based on parameter search conducted on the NLM200
dataset (Remark 4.2). By using the best configuration that maximized the MAP score on
that smaller dataset, from Table 1 we show that similar performance is also obtained on the
larger L1000 dataset.

Finally, among the ranking approaches we tried, the best ranking method is Borda’s
aggregation of the two ranked lists, the first of which is based on average co-occurrence
scores and the second is the semantic predication based binning approach with average co-
occurrence as the tie-breaker within each bin. This aggregated ranking is used to obtain the
best scores we reported in all the tables discussed in this section. The semantic predication
based binning provided a 3% improvement in the MAP score for both datasets.

5. Supervised Prediction with Co-Occurrences and Latent Associations

In Section 4, we introduced an unsupervised ensemble approach that uses named en-
tities, semantic predications, and output label co-occurrence frequencies to predict MeSH

7We note that this is because we only used it for a specific set of qualifier terms that are in MeSH but
needed a graph-based mapping to obtain the MeSH main headings.
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Table 3: Different combinations of N , α, and β

Parameters
L1000 dataset

Rµ Pµ Fµ MAP

N = 25, α = 0.10, β = 0.05 0.51 0.33 0.40 0.36

N = 25, α = 0.08, β = 0.04 0.56 0.29 0.38 0.38

N = 35, α = 0.08, β = 0.04 0.57 0.28 0.38 0.38

N = 35, α = 0.06, β = 0.03 0.62 0.23 0.33 0.39

terms for a given biomedical citation. Although unsupervised approaches are useful when
training data is unavailable, clearly, when we have access to training data, we would want to
develop methods that give the best performance. Interestingly, as we show in this section,
output label co-occurrences also help improve performance of k-NN based approaches that
use training data. Specifically, we use a learning-to-rank framework similar to that employed
by Huang et al. [1] and incorporate co-occurrence frequencies (from Section 4.4) and latent
label associations computed using reflective random indexing [6] as new features in addition
to the neighborhood based features to obtain the best results known at the time of this
writing on the two datasets introduced in Section 3. First, we introduce the k-NN approach
and the learning-to-rank framework used in the rest of the paper.

5.1. Nearest Neighbors for Biomedical Citations

The k-NN approach for multi-label classification starts out by identifying k instances Ti,
i = 1, . . . , k, in the training dataset that are ‘closest’ to the testing instance I under con-
sideration. Intuitively, because nearest neighbor instances significantly resemble the current
instance we assume they share the same characteristics and believe most correct labels for I
are going to be in the neighborhood

Nk(I) =
k⋃
i=1

G(Ti), where T1, . . . , Tk are the k nearest neighbors (2)

and G(Ti) is the set of correct labels for the training instance Ti. However, Nk(I) may
be very large compared with the average number of labels assigned per instance (which is
in the range 13–15 MeSH terms for our current problem). Hence, a ranking on labels in
Nk(I) is imposed and a small subset of top ranked labels is chosen to be the final predicted
set of labels for I. In the case of predicting MeSH terms for biomedical citations it was
shown [1] that k = 40 leads to a coverage of up to 90% of all the correct terms for new
unseen instances. The nearest neighbors of the citations are computed based on a ranking of
neighboring training documents determined using a similarity score between them and the
testing instance. The similarity score is based on the weighted score of the words that are
contained in both a neighbor training instance and the testing instance, where the weight of
a word is determined based on its frequency in the entire training corpus, its local frequency
in the current instances being compared, and also on the document lengths (in terms of
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number of words) of the instances [19]. Huang et al. [1] use this approach to compute the
top 50 neighbors for both testing datasets we use in this paper and for our experiments we
use the same top 50 neighbors made available by them.

5.2. Learning-to-Rank Using a Linear Feature Based Model

In information retrieval, for an input query, an effective search system is expected to
return a ranked list of documents where the relevance decreases as the rank increases. Tra-
ditionally, this ranking was done based on cosine similarity of query terms’ vector with
document vectors in a vector space model [20] of a corpus or based on specific retrieval
scoring methods such as BM25 [21]. Similar to how we aggregated the rankings in Sec-
tion 4.5, different rankings according to different scores are aggregated in an unsupervised
fashion. However, such schemes assume that all constituent scoring mechanisms are equally
important. However, this might not be the case and learning-to-rank [5] has emerged from
the machine learning community as an automated way of learning functions that can rank
a list of documents in response to an input query based on different query-specific features
extracted from the documents. A learning-to-rank algorithm follows a supervised approach
and in its training phase, takes as input a training dataset of queries and the corresponding
ranked lists of documents:

{(Qi,R(Di)) : i = 1, . . . , n}, (3)

where Qi is a query, Di is the set of documents associated with Qi, R(Di) is the ground truth
ranking on the documents for Qi, and n is the size of the training dataset. The algorithm
then learns a ranking model that minimizes an appropriate loss function that pertains to
the ranking. We note that the training process actually extracts features fj(D

r
i ), where

r = 1, . . . , t(i), for each document Dr
i ∈ Di where t(i) is the number of documents provided

to the i-th query instance for training and j is an index for the particular features used.
Note that features extracted from the documents are heavily based on the specific query to
tightly constrain the ranking based on information available in the query. Finally, given a
new query and a specific set of documents as input, the learned model imposes a ranking on
the document set based on query specific document features. This is a general description
of the problem; for a more detail discussion of the pointwise, pairwise, and listwise variants,
please see Section 1.3.3 in [5].

Next we map our problem of predicting MeSH terms to a listwise variant, specifically
the linear feature based coordinate ascent method by Metzler and Croft [22] which is part
of the RankLib library8. In Equation (3), our queries Qi are the biomedical citations and
the documents Di are candidate MeSH terms from the nearest 50 neighbors as shown in
Equation (2). The listwise variant in [1] minimizes cross entropy of probability distributions
obtained by using a sotfmax activation function of the ground truth and predicted relevance
judgment vectors for training instances. We chose the coordinate ascent method in [22]
instead, as it maximizes the mean average precision (MAP), which directly corresponds to
our goal of getting as many relevant MeSH terms as high as possible in the ranked list. While

8Open source collection of learning-to-rank implementations part of the Lemur project: http://

sourceforge.net/p/lemur/wiki/RankLib/
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coordinate ascent is the parameter estimation method used, the actual approach in [22] uses
a linear feature based model; we refer the readers to the original paper [22] for further details.

For the learning-to-rank training dataset, we used the 200 (citation, MeSH-term-set)
pairs used by Huang et al. [1] in their paper to retain the same level of available training
data. Next we discuss the features extracted for each candidate MeSH term in Equation (2)
for a given citation I.

5.3. Features for Candidate MeSH Terms

Based on the input testing citation (title and abstract text), we extract features for each
candidate term obtained from the 50 nearest neighbors of the citation (≈ 200 such terms
occur in each neighborhood) in the training dataset. In this Section we describe all the
features considered for candidate terms in our experiment. We start out with features that
are based on the degree of similarity of the nearest neighbors and continue with a few other
features introduced for unsupervised extraction in Section 4.

5.3.1. Neighborhood Features

For each citation C in the k-nearest neighborhood of a given testing instance I, we have
the similarity score S(C, I), which is essential to find the nearest neighbors in the first place.
Using these similarities, for a given candidate term t from the neighborhood Nk(I), we
compute the neighborhood feature as the sum

fNk (t, I) =
∑

t∈G(Tj),j=1,...,k

S(Tj, I), (4)

where T1, . . . , Tk are the nearest neighbors and G(Tj) are the correct MeSH terms for training
citation Tj as in Equation (2). We experimented with neighborhood score sum features for
different k values from k = 10 to 50 with increments of 10. Intuitively, using a combination
of neighborhood features for several k helps the algorithm learn the optimal importance
(feature weights) it should assign to neighbors at different distances from the testing instance;
choosing a fixed k handicaps the learning process in this sense. Hence we also experimented
with combinations of fNk for different values of k (more on this in Section 5.4).

5.3.2. Context Term and Semantic Predication Features

From Section 4.4, we recall that context terms C(I) are MeSH terms extracted from the
title and abstract of a citation I through named entity recognition. Although context terms
may not necessarily be tagged for a biomedical citation, they can nevertheless be included
as a Boolean feature

fA(t, I) =

{
1 if t ∈ C(I);
0 otherwise.

(5)

Another Boolean feature is if the candidate term participated either as the subject or object
of a semantic predication extracted from the title and abstract text. Recall from Section 4.5,
predications are binary relationships between named entities (mapped eventually to MeSH
terms through graph-mining) extracted from title and abstract text. In the unsupervised
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approach, this feature was used for binning candidate terms, here it is used as the binary
feature

fP (t, I) =

{
1 if t is subject/object of a predication extracted from I;
0 otherwise.

(6)

5.3.3. Co-occurrence Score Based Feature

The average co-occurrence score of a candidate term with all context terms C(I) is used
as one of the methods used to rank candidate terms in the unsupervised ensemble approach
in Section 4.5; the co-occurrence sum is actually computed in lines 3–4 of the Apply-Context
procedure in Section 4.4. Here we introduce the co-occurrence frequency based feature for a
candidate term t as

fF (t, I) =
∑
c∈C(I)

M[c][t], (7)

where M is the normalized co-occurrence matrix from Equation (1) for all MeSH terms
computed purely using MeSH term sets of all available biomedical citations.

5.3.4. Reflective Random Indexing Based Feature

Before going into the details of this feature, we first discuss the general rationale and the
intuition behind random indexing.

Although the co-occurrence based feature in Equation (7) captures direct association
between the candidate term with context terms of a testing citation, it does not capture
latent or implicit associations between terms that might not have co-occurred frequently in
historical data but are nevertheless strongly associated from a distributional semantics per-
spective. In traditional information retrieval research that employs the conventional vector
space models (VSM), these implicit associations are captured using latent semantic anal-
ysis (LSA) through singular value decompositions (SVD) of the term-document matrices.
Owing to the significant computational burden imposed by SVDs, newer distributional ap-
proaches that obviate these expensive operations have been developed. Random indexing
(RI) is one such alternative that has been shown to have several applications in indirect infer-
ence, literature based knowledge discovery [6], and clinical concept extraction from textual
narratives [23].

In the traditional sense of deriving word associations from a document corpus using
distributional semantics, RI starts out by assigning elemental vectors to each word in the
vocabulary. These initial word vectors have an empirically chosen dimension anywhere from
100 to a few thousand. Initially, most values in each vector are zeros except for a small
number (around 10) of randomly chosen positions flipped to +1 and −1, both equal in
number. Since the documents are composed of words, document vectors are then built using
a weighted sum (based on frequency among other aspects) of vectors of the constituent words.
This approach is repeated one more time, where the document vectors formed earlier are
again used to update the word vectors where a word vector is set to the sum of the vectors
corresponding to the documents that contain it. This three step process of starting with
randomly initialized term vectors, composing them to form document vectors, and using
the resultant document vectors to further update the term vectors is called the term based
reflective random indexing (TRRI). Once this process is complete, given a query word, we
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can rank all words in the vocabulary based on their similarity to the input word using cosine
similarity of the word vectors learned through the TRRI method. For a detailed analysis
of other RI variants and a thorough introduction, please see [6]. We note that Vasuki and
Cohen [10] use TRRI to obtain the nearest neighbors of a testing citation and rank the
neighbors’ terms using the citation similarity score sums as discussed in Section 5.3.1. Using
this approach they obtain results better than the MTI method. However, since best results
are reported in [1], we directly compare with those results.

Coming back to our RI feature to capture MeSH term associations, we map the terms
to words in the TRRI framework outlined earlier, and map collections of terms (that are
assigned to all citations available through PubMed as of 2011) as documents. So for our
purposes, a document is a biomedical citation and is essentially composed of MeSH terms
that are assigned to it by human indexers at the NLM. That is, instead of treating the
citation title/abstract text as the content, we treat the bag of MeSH terms assigned to it as
its content9 Based on experimentation (see Section 5.4), we chose the TRRI variant of RI
and the dimension of 500 for the vectors to extract our feature. Finally, the TRRI feature
for a candidate term t is defined as

fR(t, I) =
∑
c∈C(I)

R(c, t), (8)

where R(c, t) is the TRRI based similarity score of t with c. We note that this feature is very
similar to the co-occurrence feature in Equation 7 in that we still measure the similarity of
the candidate term with all context terms of I. We used the semantic vectors package [24]
to construct the MeSH term vectors using TRRI.

5.4. Results and Discussion

We use all the features described in Sections 5.3.1–5.3.4 and learn a linear feature based
ranking function using a small set of 200 training citations. We extract these features for
the NLM2007 and L1000 datasets and predict MeSH terms by considering the top N = 25
terms in the ranked neighborhood terms.

The comparison of the best current results by Huang et al. with results obtained using
our method is shown in Table 4. As we can see, our method improves over all four measures
(Section 3) used for both datasets. We see a MAP score improvement of 1.8% for the NLM
dataset and 1.5% for the L1000 dataset. In the third row, we show performance measures
if we only used the neighborhood features (Equation (4)) considering top 10 and top 50
neighbors both as separate features. The difference in performance measures when using
all features (row 2) and neighborhood features is nearly twice that of the corresponding
difference between Huang et al.’s and our method with all features. It is straightforward to
see that most of the predictive power comes from neighborhood features, a typical charac-
teristic of k-NN approaches, because of the strong link between similarity of neighborhood

9We only used the MeSH term sets corresponding to citations with a date of publication in the year
1990 or later years and with non-empty titles. This improved our results over using all citations because our
manual observations revealed that several citations were not exhaustive with very MeSH terms and those
that had empty titles were also inconsistent.
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Table 4: Comparison of micro measures with N = 25

Method
NLM2007 dataset L1000 dataset

Rµ Pµ Fµ MAP Rµ Pµ Fµ MAP

Huang et al.[1] 0.712 0.390 0.504 0.626 0.714 0.347 0.467 0.615

Our method 0.727 0.398 0.514 0.644 0.730 0.355 0.478 0.630

fN10, fN50 only 0.696 0.382 0.493 0.620 0.698 0.339 0.456 0.603

citations and the MeSH terms of a testing instance. We also note that instead of using the
neighborhood score for only top 50 neighbors, experiments show that using top k neighbors
for different values of k also helps; in our case k = 10 and 50 when used simultaneously
maximized both F-score and MAP for both datasets. In Figure 1 we show the variation of
F-score for various neighborhood feature combinations for the L1000 dataset. We believe
neighborhood score features with k = 10 and k = 50 neighbors provide complementary in-
formation with score in the top 10 neighbors indicating the high relevance of a candidate
term and the score from top 50 neighbors providing the plausibility of candidates that may
be included in the final terms if they are favored by other feature types.

We also conducted experiments on the best dimension value for random indexing of MeSH
term sets. We observed that we got the best F-score and MAP values for both datasets when
the dimension is 500. In Figure 2, we plot MAP values for the L1000 dataset. We do not
see major variations at higher dimensions although the MAP value decreases slightly for
dimensions greater than 500. This is expected because at higher dimensions larger amounts
of training data is needed to ensure convergence of the term vectors to an extent that can
actually capture the distributional semantics.

Next, we measure the contribution of each feature to the overall performance by doing a
feature ablation analysis where we compare our best results with constrained configurations
where we drop some feature(s). The results of this analysis are shown in Table 5 where a
feature with a ∼ symbol next to it implies that it has been dropped from the learning-to-rank
framework. The first row of the table gives the best performance obtained when using all
features. The second row in Table 5 demonstrates that most loss occurs when we remove
the neighborhood features as expected; interestingly the performance here is close to that
of our unsupervised method as can be observed from Table 1. However, as was discussed
earlier, from Table 4, neighborhood features alone cannot achieve the best results without the
other features among which the co-occurrence based feature (fF ) and the random indexing
based feature (fR) add most value. Interestingly, the performance drop after removing only
one of these features (rows 3 and 4 of the table) is much smaller compared to the drop
when both of them are removed (row 5). This demonstrates the complementary nature
of the contributions of explicit associations measured with co-occurrence frequencies and
latent associations captured using random indexing. Dropping both the co-occurrence and
RI features leads to a loss of over 3% in recall, 2% in F-score, and nearly 3% in MAP for
the bigger L1000 dataset.
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Figure 1: F-scores with Various Neighborhood Feature Combinations in L1000 dataset

100 200 300 400 500 600 700 800

0.618

0.62

0.622

0.624

0.626

0.628

0.63

TRRI Dimensionality

M
A

P

Figure 2: MAP Variation with RI Dimensionality for the L1000 dataset

At this point we would like to note that the only common feature between our approach
and Huang et al. [1] method is the k-nearest neighborhood based feature fNk (t, I) from
Section 5.3.1. They also use more sophisticated features that use an additional training
dataset of nearly 14,000 citations and the corresponding MeSH term sets to obtain probability
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Table 5: Feature ablation analysis of micro measures with N = 25

Method
NLM2007 dataset L1000 dataset

Rµ Pµ Fµ MAP Rµ Pµ Fµ MAP

all features 0.727 0.398 0.514 0.644 0.730 0.355 0.478 0.630

∼fN10, ∼fN50 0.574 0.314 0.406 0.382 0.578 0.281 0.378 0.376

∼fF 0.719 0.393 0.508 0.637 0.719 0.349 0.470 0.621

∼fR 0.720 0.394 0.509 0.642 0.726 0.353 0.475 0.625

∼fF , ∼fR 0.697 0.382 0.493 0.621 0.697 0.339 0.456 0.603

∼fA 0.720 0.394 0.509 0.644 0.727 0.353 0.476 0.625

∼fP 0.720 0.394 0.509 0.644 0.730 0.354 0.477 0.627

estimates P (t|I) of the probability of a MeSH term t given the title and abstract text of the
instance I. These estimates rely on the distributions of individual tokens of the preferred
name of the MeSH term and those present in abstract and title text of the citation. In
contrast, we use inter-term associations that lead to higher performance gains without relying
on the associations between the words in the citation and candidate terms.

Because the average number of MeSH terms per citation is around 13, we have an ap-
proximate upper limit of 52% on precision given we choose the top 25 terms as our final
extracted term set. However, since the eventual purpose is to recommend terms to human
coders who generally tend to tolerate some false positives when several other correct terms
are recommended, the low precision is not perceived as much a bottleneck as low recall [3].
As we mention in Section 5.1, over 90% of the correct terms are expected to be in the
neighborhood, which imposes a recall limit too. However, from Table 4, our best results
only achieve a recall of 73% even when choosing the top 25 terms. With this mind, we also
conducted a manual qualitative errors analysis of false negatives (FNs) after applying our
methods. Since this is a manual process, we chose to do it only for the smaller NLM2007
dataset with 200 citations. We got perfect recall for 32 of these citations which is close to
15% of the dataset. For several false negatives, a more specific term or a more generic term
of the correct term is included in the top 25 terms. For example, when ‘Social Behavior’ was
the correct term for a citation, we had the generic term ‘Behavior’ as one of the predicted
terms. When ‘Doppler Ultrasonography’ was the correct term, our method extracted a more
specific term ‘Duplex Doppler Ultrasonography’. Since MeSH is inherently hierarchical in
nature, using such information [25] in our framework might help improve the accuracy. Also,
terms that are not specific but are used to characterize the study discussed in the paper are
often missed by our methods. Examples of such terms are ‘sex factors’, ‘time factors’, and
‘follow-up studies’. A manual examination of a citation where we missed ‘sex factors’ shows
no indication of stratification or analysis based on the sex of the patient. This is probably
discussed in the full text but ‘sex factors’ was ranked 98th for this particular citation using
our method and is a FN as we ignore those after the 25th term. A more thorough analysis
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is needed to identify various types of FNs and to tailor specific techniques to handle such
important classes of FNs.

6. Conclusion

Expediting indexing tasks at the NLM has been a priority and many efforts (including
several from the NLM) have been pursued thus far using mostly supervised approaches to
automatically predict MeSH terms for biomedical citations. In this paper we improved over
the current state-of-the-art on two public datasets by introducing new features based on the
semantic content of the abstract and title text and using explicit and latent associations
between MeSH terms based on output term sets. Using these features, we first proposed a
purely unsupervised approach that leverages term pair co-occurrence frequencies to perform
a constrained expansion of a seed set of terms obtained from the title of a citation. We used
semantic predications to bin candidate terms and then applied average co-occurrence scores
(computed using normalized co-occurrence frequencies with certain context terms) to rank
terms within the bins. We then used Borda’s rank aggregation method to combine different
ranked lists. Micro measures obtained using our methods are comparable to those obtained
using k-NN based approaches such as the MTI program from NLM.

We used the features developed for unsupervised prediction to learn a linear ranking
function and applied it to the candidate term set obtained from the k-nearest neighbors of
testing instances. Our results with this approach improve upon the best published results
on the datasets used in the experiments. Our analysis also shows the complementary nature
of the contributions of explicit co-occurrence based and latent random indexing based term
associations computed using output MeSH term sets. Although we only used pairwise asso-
ciations of terms using both co-occurrence frequencies and random indexing based methods,
a natural extension is to use high confidence association rules that involve frequent term
sets to further improve the ranking of candidate set terms. Given the hierarchical nature
of MeSH, we expect rules that incorporate the taxonomical information [26] to yield better
results.

Based on our current results, we believe that output label associations have strong po-
tential in developing more accurate systems in solving the general problem of multi-label
classification especially in situations with hundreds or thousands of labels but where large
training datasets are not available. This situation is not uncommon in biomedical domains
where the sensitive nature of the information present in textual narratives typically prevents
access to large amounts of training data. However, since the labels themselves are not sensi-
tive, large numbers of output label sets corresponding to real world instances are not hard to
obtain. Assigning diagnosis codes to electronic medical records that contain private health
information of patients is a classical example of this situation and one of our immediate goals
is to extend our research to this particular domain.
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