
Temporal Action Language TeAL

Wenbin Li David Brown Jane Hayes
Miros law Truszczyński

This report introduces the syntax of TeAL, the intermediate language
we created for bridging the gap between natural language and the low-level
target language used for reasoning. The TeAL syntax has been changed in
several places since last report so that the syntax is closer to natural language.
This appendix also introduces Action Language AL, TeAL is an extension of
AL. Appendix A contains two TeAL system descriptions: CM1 requirements,
a scenario based on requirements taken from a real project; and double play,
a scenario based on baseball rules.

Background: Action Language

We design TeAL as an extension of Action Language AL. AL is one of the
action languages used in knowledge representation domain for specifying the
preconditions and effects of actions, and the way in which systems evolve.
However, action languages cannot represent temporal information.

AL includes actions and fluents. An action is an event that changes
the system. A fluent is a condition that can change. The condition of the
system can be described by sets of fluents and each fluent represents an
atomic property of the system (statements that are true or false). Fluents
are changed as the effects of actions. A system description D of AL consists
of expressions of the following form:

State constraint L if P (1)

Dynamic causal law A causes L if P (2)

Executability condition impossible A1, . . . , Ak if P (3)

where L and P are lists of fluents and their negations, and A,A1, . . . , Ak are
actions. State constraint (1) says that L holds (every fluent and the negation

1



of a fluent in L holds) in every state in which P holds (in the same sense as
L). Dynamic causal law (2) describes the effects of actions. Executability
condition (3) specifies the prerequisites of actions. For example:

connect(serA, nodeA) causes connected(nodeA, serA) if systemOn

says that executing the action connect(serA, nodeA) when the system is on
results in nodeA and serA being connected, and

impossible connect(serA, nodeA) if connected(serA, nodeA)

specifies the prerequisite of the action connect(serA, nodeA).
The semantics of a system description D can be modeled as a transition

system TD. The transition system represents all possibles ways a system can
evolve. Each transition system contains a set of states that are connected
by edges. A state is a collection of fluents and their negations. If a state s
contains a fluent f, f holds in s. If s contains ¬ f, f does not hold in s. Each
edge is marked by a set of actions a. We define TD as the set ⟨S,R⟩ where:

1. S is the set of all interpretations s such that, for every state constraint
L if P in D, s satisfies L if s satisfies P .

2. R is the set of all triples ⟨s, a, s⟩ such that, for every Dynamic causal
law A causes L if P in D, s satisfies L if s satisfies P , a contains A,
and for every Executability condition impossible A1, . . . , Ak if P , if S
satisfies P , a does not contain all of A1, . . . , Ak.

Syntax of TeAL

The syntax of TeAL contains two parts: Declaration and Statements.
Declaration includes declarations of sort, agent, constant, variable, fluent,
action, and time unit. Statements includes action description, initial con-
straint, and temporal description.

TeAL Declarations

An TeAL signature <S, AG, C, F, AC, T> consists of six sets: a set S of
sort names, a set AG of agent names, a set C of constants, a set F of fluent
names, a set AC of action names, and a set T of time unit.

A sort declaration is:

2



sort s1, . . . , sk;

For example:

sort server, node;

declares two types of entities: server and node.
A constant declaration is:

constant s1 con1, . . . , conk;

where s1 is a sort declared in sort declaration and con1, . . . , conk is a list of
constants. For example:

constant node nodeA, nodeB, nodeC ;

declares three nodes.
An agent declaration is:

agent ag1, . . . , agk;

where ag1, . . . , agk are agent names. For example:

agent nodeA, nodeB, nodeC ;

declares that three nodes are agents.
The declaration of fluent is of the form:

fluent fluentName(s1, . . . , sk);

where fluentName is a string that represents a fluent name and s1, . . . , sk is
a set of sort names. For example:

fluent connected(serA, nodeA);

The declaration of action is:

action actionName(s1, . . . , sk);

where actionName is a string that represents an action name and s1, . . . , sk
is a list of sort name, in which s1 must be a declared agent. For example:

action estConn(serA, nodeA);

3



declares an action that represents the action establishing connection. The
action is executed by serA.

The declaration of time units is of the form:

timeUnit unit1, , unitk;

For example:

timeUnit seconds, milliseconds;

declares two time units.

TeAL Statements

A TeAL theory is a triple (AD ,IC ,TC ) where AD is the set of action
definitions, IC is the set of initial constraints, and TC is the set of temporal
constraints.

The action definitions specify the causal dependencies among actions.
They provide the relationships among fluents, the prerequisites of actions,
and action effects. The syntax of AD reuses the syntax of AL.

The second part of TeAL theory, IC , contains initial constraints that
define the initial state of the system. An initial constraint is an expression:

initially L

where L is a fluent.
The presence of the component TC in a TeAL theory is the key fea-

ture that distinguishes TeAL from AL. TC specifies temporal information
including temporal constraints and action durations.

A duration specification is an expression:

duration Action x unit;

where x is a positive number and units refers to the time units such as
millisecond, second, or minute.

Temporal constraints describe temporal relationships among the times
when events occur. Temporal conditions are the basic component of temporal
constraints. A temporal condition models the temporal relationship between
the occurrence time of two events.

TeAL introduces prompts as a component of temporal conditions. The
general form of a prompt is:

4



promptOperator [next | previous] Action
TeAL provides two prompt operators : commence and terminate, which
represents the previous or next occurrence of starting or successfully finishing
an action. Thus, each action Act is related to two prompts: commence Act
and terminate Act. Additionally, one can relate two consecutive occurrences
of the same action to each other in TeAL statements. To distinguish between
them, TeAL provides the keywords previous and next.
For example,

commence previous connect(serA, nodeA)

stands for the most recent time in the past of commencing the action
connect(serA, nodeA).

The BNF for a temporal condition follows:

< temporalCondition > ::= < timeReference1 > [ when1 ] | [ when2 ]
when1 ::= < timeComparator >< timeModifier >
when2 ::= < timeComparator > [< timeModifier >]
< timeReference2 >
< timeComparator > ::= earlierthan | at | laterthan
| noearlierthan | nolaterthan
< timeModifier > ::= x units before | x units after
< timeReference1 > ::= < prompt > | L
< timeReference2 > ::= < prompt > | starttime | L

where x is an positive value and L is a fluent or its negation.
We use timeReference1 and timeReference2 to specify time moments. The

term starttime represents the time moment when the system starts; prompt
indicates the time moment when the corresponding prompt occurs; L indi-
cates the time moment when the fluent L begins to hold.

We use timeComparator to specify the relationship between the time mo-
ments indicated by timeReference1 and [< timeModifier >] < timeReference2 >.
If < timeReference2 > does not exist in a temporal condition, it means the
temporal condition specifies the relationship between the time moments in-
dicated by timeReference1 and [< timeModifier >] currentT imeMoment.
The term currentT imeMoment can be any time moment that is checked.

The parameter timeModifier modifies the time given by the second timeReference.
Term units refers to the time units such as millisecond, second, and minute.

For example, TeAL can represent “5 seconds after serA establishes a con-
nection to nodeA, it drops the connection to nodeB” as:

5



commence dropConn(serA, nodeA) at 5 seconds before
terminate estConn(serA, nodeB)

TeAL can represent “serA receives a message in 5 seconds after nodeA sends
it” as:

received(serA,msg, nodeA) nolaterthan 5 seconds after
terminate previous send(nodeA,msg, serA)

TeAL can represent “serA sends a message to nodeA in the next 5 seconds”
as:

send(serA,msg, nodeA) nolaterthan 5 seconds after

The basic form of a temporal constraint is:

if A1 and . . . and Ak then B1 or . . . or Bm; (4)

where A1, . . ., Ak and B1, . . ., Bm are temporal conditions or their negation.
If a temporal constraint is of the form:

if (A11 or . . . or A1n) and . . . and Ak then B1 or . . . or Bm;

this temporal constraint is equivalent to the following collection:

if A11 and . . . and Ak then B1 or . . . or Bm;
or
. . .
or

if A1n and . . . and Ak then B1 or . . . or Bm;

Similarly, if a temporal constraint is of the form:

if A1 and . . . and Ak then B11 and . . . and B1n) or . . . or Bm;

this temporal constraint is equivalent to the following collection:

if A1 and . . . and Ak then B11 or . . . or Bm;
and
. . .
and

if A1 and . . . and Ak then B1n or . . . or Bm;

6



It should be noted that if k = 0 and m = 1, we can view the temporal
condition B1 as a special temporal constraint. In TeAL, one can express “A
connected node should re-identify itself to the server within 10 seconds after
the connection is established, or the server will drop the connection within 2
seconds” as:

if not terminate (nodeA, serA) nolaterthan 10 seconds after
terminate connect(serA, nodeA),
then terminate dropConn(serA, nodeA) nolaterthan 2 seconds ;

Following is the complete BNF of TeAL:

< declaration > ::= < sortDeclaration > |< constantDeclaration >
| < agentDeclaration > | < variableDeclaration >
| < fluentDeclaration > | < actionDeclaration >
| < unitDeclaration >
< sort > ::= string
< constant > ::= string
< variable > ::= string
< agent > ::= < constant >
< fluentName > ::= string
< actionName > ::= string
< unit > ::= string
< sorts > ::= < sort > | < sorts >, < sorts >
< sortDeclaration > ::= sort < sorts >;
< constants > ::= < constant > |< constants >, < constants >
< constantDeclaration > ::= constant< sort > < constants >;
< variables > ::= < variable > | < variables >, < variables >
< variableDeclaration > ::= variable < sort > < variables >;
< agents > ::= < agent > | < agents >, < agents >
< agentDeclaration > ::= agent < agents >;
< fluentType > ::= < fluentName > (< sorts >)
< fluentDeclaration > ::= fluent < fluentType >;
< actionType > ::= < actionName > (< agent > [, < sorts >])
< actionDeclaration > ::= action < actionType >;
< units > ::= < unit > | < units >, < units >
< unitDeclaration > ::= timeunit < units >;
< attribute > ::= < constants > | < variable >
< attributes > ::= < attribute > |< attributes >, < attributes >

7



< literal > ::= < fluentName > (< attributes >)
| not < literal > | < specialF luent >
< specialF luent > ::= inprogress < action >
| engaged < agent >
< literals > ::= < literal > | < literals > and < literals >
| < literals > or < literals >
< action > ::= < actionName > (< agent > [, < attributes >])
< actions > ::= < action > | < actions > and < actions >

< statement > ::= < actionDescription >
| < initialConstraint > | < temporalDescription >
< actionDescription > ::= < stateConstraint >
| < dynamicCausalLaw > | < executabilityCondition >
< stateConstraint > ::= < temporalCondition > if < temporalCondition >
;
< dynamicCausalLaw > ::= < prompt > causes < temporalCondition >
if < temporalCondition >;
< executabilityCondition > ::= impossible < prompts >
if < temporalCondition >;
< initialConstraint > ::= initially < literals >;
< temporalDescription > ::= < durationSpecification >
| < tempConstraint >
< durationSpecification > ::= duration < action > integer
< unit >;
< tempConstraint > ::= < temporalCondition >;
| if < temporalCondition > then < temporalCondition >;
| if < temporalCondition > then null;

< temporalCondition > ::= < timeReference1 > [ when1 ] | [ when2 ] |
not < temporalCondition > |
< temporalCondition > and < temporalCondition > |
< temporalCondition > or < temporalCondition > |
(< temporalCondition >)
when1 ::= < timeComparator >< timeModifier >
when2 ::= < timeComparator > [< timeModifier >]
< timeReference2 >
< timeComparator > ::= earlierthan | at | laterthan |

8



noearlierthan | nolaterthan
< timeModifier > ::= x units before | x units after
< timeReference1 > ::= < prompt > | L
< timeReference2 > ::= < prompt > | starttime | L < prompt >
::= [< promptOperator >] [next | previous] < action >
< prompt > ::= < prompt > | < prompts > and < prompts >
< promptOperator > ::= commence | terminate

TeAL System Descriptions

Example 1. CM1 requirements
This examples uses requirements in CM1 dataset, a real dataset taken from
NASA project.

TeAL theory:
% Comments are marked with
% Declarations:

% States for the simulation and the time horizon

% Sorts used in the simulation
sort node;
sort message;

constant node ccm, icu, scu, icui, scui;
constant message hk, cmd, hbeat, pdu, errorReport, nak;
constant interface icui, scui;
constant endunit icu, scu;
constant controlunit ccm;

variable node Sender, Receiver;
variable message Msg;
variable interface Inter;
variable endunit End;

% Agents, the entities in the simulation

9



% that can take actions
agent node;

% Fluents; state values for the simulation
fluent received(scui,pdu,scu);
fluent received(icui,cmd,ccm);
fluent received(scui,cmd,ccm);
fluent received(icui,hbeat,icu);
fluent received(ccm,hbeat,icui);
fluent received(icu,cmd,icui);
fluent received(scu,cmd,scui);
fluent error(cmd);
fluent correct(cmd);

% Actions for the simulation
action produce(ccm,hk);
action process(ccm,cmd);
action send(scui,pdu,scu);
action send(icui,cmd,ccm);
action send(scui,cmd,ccm);
action send(icui,hbeat,icu);
action send(ccm,hbeat,icui);
action send(icu,cmd,icui);
action send(scu,cmd,scui);
action verify(icui,cmd);
action discard(icui,cmd);
action send(icui,errorReport,ccm);
action send(icui,nak,icu);

% Time unit for the simulation
timeunit unit;

% Duration
duration produce(ccm,hk) 1 unit;
duration process(ccm,cmd) 1 unit;
duration send(scui,pdu,scu) 1 unit;
duration send(icui,cmd,ccm) 1 unit;
duration send(scui,cmd,ccm) 1 unit;

10



duration send(icui,hbeat,icu) 1 unit;
duration send(ccm,hbeat,icui) 1 unit;
duration send(icu,cmd,icui) 1 unit;
duration send(scu,cmd,scui) 1 unit;
duration verify(icui,Msg) 1 unit;
duration discard(icui,Msg) 1 unit;
duration send(icui,errorReport,ccm) 1 unit;
duration send(icui,nak,icu) 1 unit;

% Statements of simulation

% The Instrument Control Unit shall send real-time commands
% to the Interface of Control Component every B milliseconds.
% Default value: B=10
commence send(icu,cmd,icui) nolaterthan B unit after starttime;
if terminate send(icu,cmd,icui) then commence next send(icu,cmd,icui) at B
unit after;
impossible send(icu,cmd,icui) if not terminate previous send(icu,cmd,icui) at
B unit before and not nolaterthan B unit after starttime;

% Once a message is sent, it is received within Z units.
% Default value: Z=10
if terminate send(Sender,Msg,Receiver) then received(Receiver,Msg,Sender)
nolaterthan Z unit after;
impossible received(Receiver,Msg,Sender) if not terminate send(Sender,Msg,Receiver)
noearlierthan Z unit before;

% The Control Component shall send the heart beat message
% to the Interface of Instrument Control Unit at an interval
% of E milliseconds. The interface will send the message to
% the Instrument Control Unit.
% Default value: E=15
commence send(ccm,hbeat,icui) nolaterthan E unit after starttime;
if terminate send(ccm,hbeat,icui) then commence next send(ccm,hbeat,icui)
at E unit after;
impossible send(ccm,hbeat,icui) if not terminate previous send(ccm,hbeat,icui)
at E unit before and not nolaterthan E unit after starttime;
if received(icui,hbeat,ccm) then commence send(icui,hbeat,icu);

11



impossible send(icui,hbeat,icu) if not received(icui,hbeat,ccm);

% The Interface of Spacecraft Control Unit shall send
% one Program Data Update message to the Spacecraft
% Control Unit every H unit.
% Default value: H=10
commence send(scui,pdu,scu) nolaterthan H unit after starttime;
if terminate send(scui,pdu,scu) then commence next send(scui,pdu,scu) at H
unit after;
impossible send(scui,pdu,scu) if not terminate previous send(scui,pdu,scu)
at H unit before and not nolaterthan H unit after starttime;

% The Control Component shall produce housekeeping messages
% at a rate of X milliseconds.
% Default value: X=20
commence produce(ccm,hk) nolaterthan X unit after starttime;
if terminate produce(ccm,hk) then commence next produce(ccm,hk) at X
unit after;
impossible commence produce(ccm,hk) if not terminate previous produce(ccm,hk)
at X unit before and not nolaterthan X unit after starttime;

% The Interface of Spacecraft Control Unit shall be
% capable of receiving a telecommand from the Spacecraft
% Control Unit every G milliseconds and forward it to the
% Control Component.
% Default value: G=20
commence send(scu,cmd,scui) nolaterthan G unit after starttime;
if terminate send(scu,cmd,scui) then commence next send(scu,cmd,scui) at
G unit after;
impossible send(scu,cmd,scui) if not terminate previous send(scu,cmd,scui)
at E unit before and not nolaterthan G unit after starttime;
if received(scui,cmd,scu) then commence send(scui,cmd,ccm);
impossible send(scui,cmd,ccm) if not received(scui,cmd,scu);

% The Control Component shall process commands within
% F milliseconds of receipt from the Interface of
% Instrument Control Unit or the Spacecraft Control Unit.
% Default value: F=10

12



if received(ccm,cmd,Inter) then commence process(ccm,cmd) nolaterthan F
unit after;
impossible process(ccm,cmd) if not received(ccm,cmd,Inter) noearlierthan F
unit before;

Example 2. Double Play
This program simulates a double play in the sport of baseball. The batter
starts at home plate with a runner on first base. First, the batter must hit
the ball, which brings it in to play. Then the runners can run and the de-
fense attempts to field the ball; once fielded, the players can throw the ball
between bases and tag out the runners.

TeAL theory:
% Comments are marked with % % Declarations:

% States for the simulation and the time horizon
parameter numStates = 12;
parameter horizon = 300;

% Sorts used in the simulation
sort offense;
sort base;
sort defense;

constant offense batter,runner;
constant base home,first,second,outfield;

% Note - this program considers the ball part of the defense;
% this is so the output will track what happens to the ball
% (and so that only one thing can happen to the ball at a time).
constant defense ball;

% Agents, the entities in the simulation
% that can take actions
agent offense;
agent defense;

% Fluents; state values for the simulation

13



fluent onBase(offense,base);
fluent inPlay(defense);
fluent ballFielded(defense);
fluent ballAt(defense, base);

% Actions tracked by the simulation
show action run(offense,base,base);
show action hit(offense);
show action field(defense);
show action throw(defense,base,base);
show action tag(defense,base);

% Durations
parameter RunTime = 270;
parameter TagTime = 10;
parameter HitTime = 20;
parameter FieldTime = 60;
parameter Grab = 20;
parameter LongThrow = 120;
parameter ShortThrow = 80;

duration run(batter,home,first) RunTime unit;
duration run(batter,home,second) RunTime unit;
duration run(batter,first,home) RunTime unit;
duration run(batter,first,second) RunTime unit;
duration run(batter,second,home) RunTime unit;
duration run(batter,second,first) RunTime unit;
duration run(runner,home,first) RunTime unit;
duration run(runner,home,second) RunTime unit;
duration run(runner,first,home) RunTime unit;
duration run(runner,first,second) RunTime unit;
duration run(runner,second,home) RunTime unit;
duration run(runner,second,first) RunTime unit;
duration tag(ball,second) TagTime unit;
duration tag(ball,first) TagTime unit;
duration hit(batter) HitTime unit;
duration field(ball) FieldTime unit;
duration throw(ball,outfield,first) LongThrow unit;

14



duration throw(ball,outfield,second) ShortThrow unit;
duration throw(ball,first,second) ShortThrow unit;
duration throw(ball,second,first) ShortThrow unit;
duration throw(ball,first,outfield) LongThrow unit;
duration throw(ball,second,outfield) ShortThrow unit;
duration throw(ball,outfield,home) LongThrow unit;
duration throw(ball,first,home) ShortThrow unit;
duration throw(ball,second,home) LongThrow unit;
duration throw(ball,home,first) ShortThrow unit;
duration throw(ball,home,second) LongThrow unit;

% Initial state of simulation

% Batter at home plate, runner at first
initially onBase(batter,home);
initially onBase(runner,first);
initially ballAt(ball, outfield);

% Rules for running

% Running moves the player from one base to another
terminate run(P,L1,L2) causes not onBase(P,L1);
terminate run(P,L1,L2) causes onBase(P,L2);

% The ball must be in play to run
impossible commence run(P,L1,L2) if not inPlay(ball);

% The bases must be run in order
impossible commence run(P,L1,L2) if not onBase(P,L1);
impossible commence run(P,L1,second) if not onBase(P,first);
impossible commence run(P,L1,first) if not onBase(P,home);

% You can only hit the ball from home
impossible commence hit(batter) if not onBase(batter,home);

% Hitting the ball causes it to be in play
terminate hit(batter) causes inPlay(ball);

15



% You can’t field the ball if it’s not in play
% or it has already been fielded
impossible commence field(ball) if not inPlay(ball);
impossible commence field(ball) if ballFielded(ball);

% Fielding the ball causes it to be fielded
terminate field(ball) causes ballFielded(ball);

% The ball has to be at a base to tag that base
impossible commence tag(ball,B) if not ballAt(ball,B);
impossible commence tag(ball,B) if not inPlay(ball);

% The ball has to have been fielded (i.e., retrieved by the fielder)
% to be thrown; it also has to be where it’s being thrown from
% to be thrown...
impossible commence throw(ball,B1,B2) if not ballAt(ball,B1);
impossible commence throw(ball,B1,B2) if not ballFielded(ball);

% Throwing the defense causes it to cease to be at its initial
% position and be at the base it was thrown to
terminate throw(ball,I,B) causes not ballAt(ball,I);
terminate throw(ball,I,B) causes ballAt(ball,B);

% Force the runners to get to base shortly after the ball is hit
if terminate hit(batter) then terminate run(batter,home,first) nolaterthan
280 unit after;
if terminate hit(batter) then terminate run(runner,first,second) nolaterthan
280 unit after;

% And give the defense a time limit to complete both tags
terminate tag(ball,second) nolaterthan 290 unit after starttime;
terminate tag(ball,first) nolaterthan 290 unit after starttime;

16



References

[1] C. Baral and M. Gelfond, “Reasoning agents in dynamic domains,”
Logic- based artificial intelligence, pp. 257-279, 2000.

17


