
Answer-Set Programming in Requirements Engineering

Wenbin Li, David Brown, Jane Huffman Hayes, and Miroslaw Truszczynski

Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA
wenbin.li,david.b.brown@uky.edu hayes,mirek@cs.uky.edu

Abstract. [Context and motivation] Requirements form the foundation of soft-
ware systems. The quality of the requirements influences the quality of the de-
veloped software. [Question/problem] One of the main requirement issues is in-
consistency, particularly onerous when the requirements concern temporal con-
straints. Manual checking whether temporal requirements are consistent is te-
dious and error prone and may be prohibitively expensive when the number of
requirements is large. [Principal ideas/results] We show that answer-set pro-
gramming tools (ASP) can be successfully applied to detect inconsistencies in
software and system requirements. Our assumption is that these requirements
are given in a formal requirement specification language called Temporal Ac-
tion Language (TeAL). [Contribution] We present a translation from TeAL to
the ASP language format accepted by clingcon. We show that clingcon can an-
alyze requirements for several real software systems, verifying their consistency
or identifying inconsistencies. We also examine the performance of the clingcon
translation.

Keywords: temporal requirements, requirement engineering, knowledge repre-
sentation.

1 Introduction

It is well documented in the software engineering literature that software malfunction
can frequently be traced back to problems with software or system requirements [10,
6, 9]. The analysis of requirements for ambiguity, inconsistency, or incompleteness, if
performed manually, is labor intensive, tedious, and error-prone. Indeed, a specification
of a system may contain so many requirements that it is simply not feasible to check
them manually.

We focus our work on consistency checking of temporal requirements. As many
software systems support real-time operations, temporal requirements are common. For
instance, a mission-critical financial trading system requires that certain transactions
occur within a certain amount of time of other transactions (such as posting the proceeds
of a stock sale or logging realized dividend payments); an e-commerce system requires
that a payment be received a specified time prior to submitting an order for processing;
a safety-critical pacemaker system requires that pacing occur within milliseconds of
certain detected events. Moreover, as these examples implicitly suggest, high quality of
temporal requirements is essential. Errors in specifying, interpreting, or implementing
temporal requirements can lead to disastrous consequences. If one or more requirements

related to the pacing of the heart are in conflict, a negative heart event might not trigger
a necessary lifesaving pacing event.

In this paper we show that answer-set programming (ASP), with its program pro-
cessing tools, can play an important role in the analysis of temporal requirements. The
system we are designing addresses the problem in two main steps. First, textual require-
ments are analyzed to identify temporal requirements and additional relevant informa-
tion. These are then translated into a high-level temporal requirement representation
language called Temporal Action Language or TeAL [15]. TeAL extends the action
language AL [5] with dedicated, intuitive syntax to capture temporal constraints in a
way that reflects common lingustic patterns. The language was designed to help re-
quirement engineers build correct TeAL representation of the original textual require-
ments, as well as support partial automation of that step [14]. Second, TeAL theory
is translated to the ASP language accepted by the ASP solver clingcon [12] and, with
the use of clingcon, the consistency of the TeAL theory (and effectively, of the origi-
nal textual requirements) is verified. This step is the focus of the present paper. In the
main contributions, we provide the details of the translation from TeAL to clingcon
and show its correctness. Practitioners may wonder if formal methods can be applied
to non-trivial systems in a timely manner. To address their concerns, we demonstrate
the effectiveness of clingcon in analyzing several example requirement sets from real
software systems and examine the performance of the translation to clingcon.

The paper is organized as follows. In the next section, we present several bench-
mark requirement documents. They will be used to illustrate our approach. Section 3
provides a brief overview of the language TeAL [14] for representing system specifi-
cations. Next, we discuss the translation from TeAL to clingcon. Section 6 discusses
TeAL representations of benchmark requirement documents and their translations into
ASP (clingcon input language). That section also presents the results of our benchmark
example studies. Our findings are discussed in the last section of the paper, where we
also present conclusions and problems for future work.

2 Benchmark examples of system requirements

Throughout the paper we will refer to several benchmark examples of requirement doc-
uments specifying (fragments of) real software systems. As we are interested in the
analysis of temporal requirements, in some cases we modified these examples from
their original form by varying durations of actions and including additional temporal
constraints. Our objective was to better illustrate both the current functionality of TeAL
as well as all aspects of the translation from TeAL to ASP. We describe one of the ex-
amples, CM1, in detail. We outline the others and provide just one sample requirement
(full descriptions at http://progit.netlab.uky.edu/teal).
CM1. This example is derived from a requirement document produced by NASA for
one of its science instruments. The document was “sanitized” (hence the presence of
variables rather than specific constants) and released by NASA for use by the software
engineering research community [1].
The Control Component shall send the heart beat message to the Interface of Instru-
ment Control Unit at an interval of E milliseconds. The interface will send the message

to the Instrument Control Unit. The Control Component shall process commands within
F milliseconds of receipt from the Interface of Instrument Control Unit or the Space-
craft Control Unit. The Instrument Control Unit shall send real-time commands to the
Interface of Control Component every B milliseconds. Whenever the Interface of In-
strument Control Unit receives a message from the Instrument Control Unit, it verifies
the message within J milliseconds. If an error is detected, the message is discarded
within K milliseconds, then an error report will be sent to the Control Component,
and a NAK message transmitted to the Instrument Control Unit within L milliseconds.
If the message is correct, the Interface of Instrument Control Unit shall forward real-
time commands to the Control Component within C units of receipt from the Instrument
Control Unit.

511Phone. This example is derived from a requirement document for the Regional Real
Time Transit Information System. These requirements focus on the performance of the
511 System and the data transfers with the transit agencies. They are based on the
existing procedures and features of the existing real-time system. [4].
If request, then transit agency system sends predictions and vehicle location within var1
seconds after receiving data request from the 511 System.

MODIS. This example is derived from the open source NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) documents [2].
Each MODIS standard input data shall be produced every var1 seconds.

UAVTCS. This example is derived from a requirement document for an Unmanned
Aerial Vehicle (UAV) Tactical Control System (UAVTCS) of the US Department of
Defense for the control of tactical UAVs. [3]
The TCS in the Normal Startup Mode shall initialize the system to the Operation State
within 60 seconds from the time power is supplied.

EasyClinic. This dataset describes a variety of artifacts from a small healthcare appli-
cation. It was developed at the University of Salerno to manage a medical ambulatory
[7].
The response time of the service shall be less than A seconds.

iTrust. This dataset is derived from the iTrust project which involves the development
of an application through which doctors can obtain and share essential patient informa-
tion and can view aggregate patient data [7].
An HCP can reassign a previously created lab procedure to a different Lab Technician
if the lab procedure is not yet in time.

3 TeAL Overview

TeAL is an extension of the action language AL [5] with expressions to represent tem-
poral constraints. The TeAL syntax of temporal constraints follows common linguistic
patterns to help analysts construct and revise TeAL theories representing textual re-
quirements. We provide here a brief overview of TeAL’s syntax and semantics to fa-
cilitate understanding of the main results of the paper concerning the translation from
TeAL to ASP. For a detailed description of TeAL, we refer to our earlier work [15, 14].

Syntax. A TeAL theory is a quadruple ∆ = ⟨SI ,AD ,TC , IC ⟩, where SI is the signa-
ture, AD is an action language (AL) theory [5], TC is the set of temporal constraints,
and IC is the set of initial state constraints. The signature SI contains the names
for sorts (for instance, data and agency in the TeAL representation of the 511Phone
example discussed below), the constants that are assigned to sorts (d1 and a1 in the
same example), and the names of fluents and actions. As usual, fluents represent atomic
(boolean) properties of the system. Complete and consistent sets of (possibly negated)
fluents describe the state of the system. For example, the fluent received(p511,d1,a1)
represents the property that the data item d1 has been received by the phone system
p511. Actions change fluents and, consequently, the state of the system. Actions are
performed by agents. For example, send(a1,d1,p511) represents an action performed
by the agent a1 to send the data item d1 to the phone system p511.

The role of an AL theory AD is to specify the action domain, that is, fluents and
actions (their preconditions and effects but not durations). Namely, AD uses state con-
straints (to specify conditions that must hold in every state), dynamic causal laws (to
describe the effects of an action when performed in a state), and executability condi-
tions (to specify preconditions for an action to be executable). The action language is
well known and we do not discuss it in any more detail here.

The component TC in a TeAL theory ∆ distinguishes TeAL from AL. It specifies
action durations and temporal constraints on actions. To refer to time we use a special
term startTime that represents the initial time moment with respect to which we in-
terpret ∆. We also refer to time indirectly by means of the prompts commence a and
terminate a that stand for the times when action a starts and ends, respectively. At
present, we assume that once actions are started they terminate successfully. For exam-
ple, commence update(p511, d1) gives the time when the action update(p511, d1)
was initiated. The modifiers previous and next can be used with prompts to identify
the time moments when the previous (next) prompt occurred. For example, to specify
the time when the most recent update(p511, d1) was initiated we may use the expres-
sion commence previous update(p511, d1). In the present version of TeAL, the
keywords previous and next cannot be nested.

A fluent appearing in a temporal condition represents the time when this fluent has
become true. Similarly, the negation of a fluent in a temporal condition represents the
time when this fluent has become false [14]. A fluent can change from true to false
(or conversely) only because of actions or passage of time. The specification “a file
becomes old if it has not been written to for 10 seconds” involves the fluent “old” (a
property of files) that becomes true just because of the passage of time. The passage of
time is handled by two special prompts totrue(fluent) and tofalse(fluent). We will not
discuss this in detail because of space.

Time moments represented by prompts and fluents are connected by temporal rela-
tionships before, after, and at the same time as that can also be annotated with specified
quantities of time. TeAL provides several keyword phrases to allow the user to express
these relationships. For example, the temporal constraint

commence update(p511, d1)

noLaterThan 10 seconds after received(p511, d1, a1)

encodes the constraint: the phone system starts to update the data within 10 seconds
after receiving the data.

These basic temporal constraints, called temporal conditions in TeAL, can be com-
bined by boolean connectives into more complex ones of the form:

if A1 & . . . & Ak, then B1 | . . . | Bm (1)

where A1, . . . , Ak and B1, . . . , Bm are temporal conditions or their negations (repre-
sented by not) and | stands for “or.”

TeAL also provides a dedicated syntax to specify the durations of actions:

duration a d units

where a is an action, d is a positive integer, and units is a time unit. TeAL allows
multiple time units, such as minutes and seconds, but all time units are converted to the
smallest unit during the translation.

The fourth part of ∆, IC , defines constraints on the initial state. Initial state con-
straints are of the form:

initially F (2)

where F is a list (conjunction) of fluent literals (intuitively, that must hold in any initial
state).

Below, we show a TeAL representation of the 511Phone requirement document,
shortened due to space limitations. It starts with declarations of sorts, constants, agents,
fluents, and actions, including action durations. Next, it specifies the initial conditions
as well as the effects and preconditions of actions. Lastly, it specifies temporal con-
straints (each preceded by the textual constraint it represents).

sort agency;
sort p511;
sort data;
constant agency a1;
constant p511 phone;
constant data d1;
agent agency, p511;

fluent received(p511, data, agency);
fluent available(data);
action send(agency, data, p511);
action update(p511, data);
duration send(a1, d1, p511) 1 second;
duration update(p511, d1) 1 second;

initially available(d1);
update(p511, d1) causes available(d1);
impossible update(p511, d1) if not received(p511, d1, a1);

Once the data is sent, it will be received in three seconds.
if terminate send(a1, d1, p511)

then received(p511, d1, a1) noLaterThan 3 seconds after;
The agency shall send data within 60 seconds after the system starts.
commence send(a1, d1, p511) noLaterThan 60 seconds after startTime;

The agency shall send data at least once every 60 seconds.
commence send(a1, d1, p511) noLaterThan 60 seconds

after terminate previous send(a1, d1, p511);

The phone system shall update the data within 10 seconds after receiving the data.
commence update(p511, d1)

noLaterThan 10 seconds after received(p511, d1, a1);

If a piece of data is not updated for 60 seconds, it shall become unavailable to users.
if not terminate update(p511, d1)

noEarlierThan 10 seconds before then not available(d1);

Semantics. We now discuss the semantics of a TeAL theory ∆ = ⟨SI ,AD ,TC , IC ⟩.
It is largely based on the semantics of AL theories [5]. The key notion is that of a
transition system, which is defined based on the AL theory AD . We will denote it by
T∆. Following Baral and Gelfond [5], we define a path in T∆ to be a sequence

⟨s0, pr0; s1, pr1; . . . ; sk−1, prk−1; sk⟩

such that s0 . . . , sk are states; pr0, . . . , prk−1 are sets of prompts;1 for every expression
initially F in IC , the state s0 satisfies F ; and for each i = 0, . . . , k−1, ⟨si, pri, si+1⟩
is an edge in T∆. It should be noted that TeAL supports the case that prompts are
performed by “time” instead of any entities. This allows the representation of “system
changes because of the passage of time”, e.g. “two seconds after receiving the message,
it becomes old.”

Paths in the transistion system T∆ represent valid evolutions of the system based on
actions. They ignore durations of actions and temporal constraints. To take the temporal
aspects of ∆ into account, we define a timed path with the horizon h to be a sequence:

⟨s0, pr0, t0; s1, pr1, t1; . . . sk−1, prk−1, tk−1; sk⟩, (3)

where ⟨s0, pr0; s1, pr1; . . . ; sk−1, prk−1; sk⟩ is a path and 0 ≤ t0 < t1 < tk−1 < h.
Intuitively, ti represents the time when the prompts in the set pri are executed, causing
the system to change to si+1 in the next time moment.

We now present the semantics of a temporal condition C = α TE β, which reads:
α occurs in relation TE to β. Here α and β are prompts or fluents and TE is a relation
between time points, for instance, noLaterThan x seconds after. The relation p, t |=
C, which we read as “C holds on p at time t,” is defined as follows (we mention only
two representative cases of the definition here and refer to an earlier paper [14] for
details):

1. If α = prtSymb A and β = prtSymb B, the condition C states that the A has
to be commenced (or terminated, depending on the prompt prtSymb) at the time
point that is in the relation TE to the time point of commencing (or terminating,
depending on the prompt) the action B (for instance: “forward message 10 seconds
after logging message”). Since there is no connection to t, p, t |= C does not depend
on t and holds if for every time s, 0 ≤ s ≤ h(p), such that α holds at time s, there
is a time s′ such that β holds at time s′ and s and s′ are in the relation TE , or if no
time point s′ in the relation TE with s falls in the range [0, h(p)].

1 This is the only difference from the transition system of Baral and Gelfond. In our work,
prompts play the role of actions.

2. If α = prtSymb next A and β = prtSymb next B, the condition C states that
the time of the next occurrence of prtSymb A must be in the relation TE to the
next occurrence of of prtSymb B. Here the concept of “next” is understood with
respect to the time t. Thus, we define p, t |= C if (1) there is no occurrence of
prtSymb B after t; or if (2) there is an occurrence of prtSymb B after t, the first
one after t takes place at time s, and there are no times s′ within the range (t, h(p)]
that are in the relation TE with s′; or if (3) there is an occurrence of prtSymb B
after t, the next one after t takes place at time s, there are times s′ within the range
(t, h(p)] that are in the relation TE with s′ and in one of them the first occurrence
of prtSymb A after t takes place.

All other cases (different combinations of prompts and fluents for α and β), and the case
of temporal conditions C = α TE , can be handled similarly. We say that a temporal
condition C holds on a timed path p, written p |= C, if for every t, 0 ≤ t ≤ h(p),
p, t |= C. These definitions extend in an obvious way to arbitrary temporal constraints
as they are simply boolean combinations of temporal conditions.

In principle, in order to check that p |= C holds, one has to check that p, t |= C for
every t, 0 ≤ t ≤ h(p). However, for each horizon h and temporal condition C there is a
finite set of time points CP (h,C), we call them checkpoints for C, with the following
property: for every timed path p, p |= C if and only if for every t ∈ CP (h(p), C)
p, t |= C holds. This property implies an algorithm to check whether p |= C holds.

We say that a TeAL theory is consistent if for every h there is a timed path p such
that p |= C, for every temporal constraint C in the theory. Otherwise, the theory is
inconsistent.

4 From TeAL to clingcon language

We designed a translation from TeAL to clingcon based on two integer parameters: the
horizon h (a positive integer) and the number of state changes n (clearly, n ≤ h), so
that each answer set of the translated program represents a valid timed path with the
horizon h traversing n states (not counting the initial state) and, conversely, each such
path corresponds to an answer set. Given a TeAL theory ∆, we write Π(∆) for the
corresponding clingcon program. Π(∆)h,n means that the parameters H (horizon) and
N (number of states) are evaluated as h and n. Additionally, Π(∆) can be divided into
two parts: Πntemp(∆), which corresponds to ⟨SI ,AD , IC ⟩, and Πtemp(∆), which
corresponds to ⟨TC ⟩. Therefore, Πntemp(∆) represents the system behavior without
the temporal constraints (leagal sequences of N states when temporal aspects are disre-
garded). We write Πntemp(∆)n for that program with the parameter N instantiated to
n. Similarly, Πtemp(∆) represents the temporal constraints to be satisfied. It involves
the parameter H that specifies the horizong within which teh constraints are to be con-
sidered. We write Πtemp(∆)h for the program Πtemp(∆) with H instantiated to h.

The program Πntemp(∆)n contains all names in SI and a new sort: state with a
set of constants {0 . . . n}, where n is configurable number. In addition, Πntemp(∆)n
contains predicates that specify following relations:

– holds(F, S) (fluent F is true at state S)

– happen(Pr, S) (prompt Pr happens at state S, and changes the system to the next
state)

– agent(Ag) (Ag is an agent)
– act(Act) (Act is an action)
– action(Ag,Act) (Agent Ag performs the action Act)
– dur(action(Ag,Act), Dur) (The duration of action(Ag,Act) is Dur)
– prompt(Pr) (pr is a prompt, an event that can change the value of a fluent; the

available prompts are com(action(Ag,Act)), ter(action(Ag,Act)), totrue(F)
and tofalse(F), the latter two representing the change caused by passage of time)

– init(F) (fluent F holds in the initial state)
– engaged(Ag) (agent Ag is performing some action)
– progress(action(Ag,Act), S) (agent (Ag) is performing action Act in state S)
– previous(happen(Pr, S1), S) (the latest occurrence of prompt Pr before state S

is in state S1)
– next(happen(Pr, S1), S) (the earliest occurrence of prompt Pr after state emphS

is in state S1)

Πntemp(∆)n contains rules that represent the state constraints, dynamic causal laws
and executability conditions ifrom AD , and the constraints on the initial state from IC .
The translation is based on the translation from AL to answer set programming [5]. The
use of prompts instead of actions introduces additional constraints in Πntemp(∆)n to
specify preconditions and effects of the prompts. Intuitively, starting an action a (that
is, executing commence a) requires that the action is not in “progress.” Moreover, an
agent starting this action must not be “engaged” in the execution of another. Finally, to
terminate an action, the action has to be in progress, and terminating an action makes
an agent no longer engaged. To model these constraints, w e use predicates progress
(progress(a) says that action “a is in progress”) and engaged (engaged(ag) says that
“agent ag is engaged”). The following rules show how the constraints pertaining to
commence can be expressed in ASP. To this end, we recall some elements of the ASP
(clingcon syntax). A rule of the form :- cond expresses a constraint that cond must
not hold, an expression kS, where S is a set, represents the constraint that at least k
elements in S must be true, and finally, a rule of the form a :- b, c, . . ., says that a can
be derived as true if b, c, . . . have been derived as true.

:- 2{happen(com(action(Ag,Ac)), S) : act(Ac)}, agent(Ag), state(S). (4)
happen(totrue(progress(action(Ag,Ac))), S)

:- happen(com(action(Ag,Ac)), S), state(S), action(Ag,Ac). (5)
:- happen(totrue(progress(Ac)), S), not happen(com(Ac), S), state(S). (6)
happen(totrue(engaged(Ag)), S)

:- happen(com(action(Ag,Ac)), S), state(S), action(Ag,Ac). (7)
:- happen(totrue(engaged(Ag)), S), agent(Ag), state(S),

{happen(com(action(Ag,Ac)), S) : action(Ag,Ac)}0. (8)
:- holds(engaged(Ag), S), happen(com(action(Ag,Ac)), S),

action(Ag,Ac). (9)

The constraints discussed above are not mentioned explicitly in requirement docu-
ments. They represent a common (shared) knowledge and must be made explicit in
Πntemp(∆). Here is yet another example of an implicit constraint that must be in-
cluded in Πntemp(∆): each state must be associated with at least one prompt, because
only prompts can change the states of the system. It can be expressed in ASP as follows:

1{happen(Pr, S) : prompt(Pr)} : −state(S). (10)

Given Πntemp(∆)n, the transition diagram T∆ is constructed according to the rules
in Baral and Gelfond’s work [5]. We also incorporate prompts and extend the results of
AL [5] to our theorem.

Theorem 1. Let ∆ be a TeAL theory ⟨SI ,AD , IC ,TC ⟩, ∆′ = ⟨SI ,AD , IC ⟩, and n
an integer. A sequence p = ⟨s0, pr0, . . . , sn−1, prn−1, sn⟩ is a valid path of ∆′ if and
only if Πntemp(∆)n has an answer set A such that for every i, 1 ≤ i ≤ n,

1. if f is a fluent, then f ∈ si if and only if holds(f, i) ∈ A
2. if pr is a prompt, then pr ∈ pri if and only if happen(pr, i) ∈ A

Moreover, for every answer set A of {Π(∆′), n} there is a valid path p = ⟨s0, pr0,
. . . , sn−1, prn−1, sn⟩ such that A and p satisfy the two conditions above.

Next, we outline the structure of the program Πtemp(∆). A valid timed path re-
quires that all temporal constraints are satisfied in every time moment on this timed
path. However, checking every time moment is infeasible. As we observed in the previ-
ous section, it can be replaced by checking the condition on a finite set of check points.
Given a temporal condition C, the check points for C are chosen so that if C is satisfied
(not satisfied, respectively) at the check point t, it is satisfied (not satisfied, respectively)
at all time moments in the interval between t and the next check point (or the horizon).
Thus, the task of checking satisfiability along a timed path can be reduced to checking
satisfiability at every check point.

For instance, let C be: α noLaterThan x seconds after. We write occur(α, t)
for the statement “α happens at time t.” If p |= occur(α, t1) holds, then for every
t′ ∈ [max(0, t1 − x), t], p, t′ |= C holds. Additionally, let us suppose that for some
t2 > t1 + x, we have (i) p |= occur(α, t2), and (ii) for no t3 such that t2 > t3 > t1,
p |= occur(α, t3) holds. Then, for every t′′ ∈ [t1 +1, t2 −x− 1], p, t′′ ̸|= C. It follows
that the check points for C are: min(t + 1, horizon) and max(t − x, 0), for all t such
that p |= occur(α, t) holds.

There are two types of check points. The first type comprises the time moments
when the system changes, that is, the last time moments when the system is still in its
present state. These are also the time moments when prompts occur. The second type
comprises the time moments when nothing changes in the system, but the satisfaction of
temporal conditions changes. Each temporal condition corresponds to a group of such
check points. Each check point has an ID, which is based on its sequence in the timed
path, and a value, which is a time moment. Typical answer set solvers will use a relation
to represent that a check point is assigned a time moment, and the grounding process
will generate instances for all possible time moments, which is very inefficient. The

key aspect of clingcon is that it combines answer set programming with constraint solv-
ing. The assignment of time moments to check points, represented as integer variables
time(CPi), where CPi is a check point, is handled using constraint solving techniques.
The rest of the program is constructed according to the standard ASP methodology. This
prevents the generation of huge numbers of ground instances of rules.

Πtemp(∆)h contains rules that set up check points. The following rules are applied
to all check points:

$domain(0..horizon). (11)
1{map(C,S) : check(C)}1 :- state(S). (12)
:- map(C1, S1),map(C2, S2), S1 > S2, not time(C1) > time(C2). (13)
:- check(C1), check(C2), C1 > C2,

time(C1) < horizon, time(C1) ≤ time(C2). (14)
checkhappen(Pr,C) :- happen(Pr, S),map(C, S). (15)
checkholds(F,C) :- holds(F, S),map(C,S). (16)

We use the relation map(C,S) to represent that state S is mapped to check point C.
Rule (11) states that the range of check points must be within the horizon. Rule (12)
states that only one state can be mapped to a check point. Rules (13) and (14) state that
the time assignment of states and check points must be based on their sequence in the
path. Rules (15) and (16) use two new relations: checkhappen and checkholds. They
are the “check point” version of the happen and holds relations that are used above.
These two rules mean that whatever happens or holds in a state must happen or hold in
its corresponding check point.

The Temp module also contains rules for specifying check points for each temporal
condition. Using the temporal condition C above, Temp contains the following rules:

exist(cp1, C1) :- check(C2), time(C2)$ == time(C1) + 1, check(C1),

checkhappen(α,C1). (17)
:- checkhappen(α,C1), not exist(cp1, C1),

horizon >= time(C1) + 1. (18)

Rule (17) uses the relation exist(cp1, C1) to define that for any check point C1 (when
α occurs), there exists another check point immediately after it. Rule (18) means that if
α occurs at a check point, and the horizon is large enough, then there must be another
check point as defined by exist(cp1, C1). Πtemp(∆)h also contains similar rules for
the check points t− x− 1.

Πtemp(∆)h uses the relation sat(C, arguments, CP) to represent that “the tem-
poral condition C is satisfied on the check point CP ”. The arguments are the actions
and fluents involved in C. Let C be the example above, Temp contains the following
rules:

sat(C,α,CP1) :- checkhappen(α,CP2), CP2 > CP1,

time(CP2)− time(CP1) <= x. (19)
-sat(C,α,CP1) :- not sat(C,α,CP1), horizon >= time(CP1) + x. (20)

Rule (19) defines when p, time(CP1) |= C, and rule (20) defines when p, time(CP1)
̸|= C.

Given a temporal constraint of the form (1), Πntemp(∆)n uses the following rule
to check that for each check point, the temporal constraint is satisfied.

:- sat(A1, args, CP), . . . , sat(Ak, args, CP),

-sat(B1, args, CP), -sat(Bm, args, CP), check(CP). (21)

This rule means that for each check point CP , if all the temporal conditions A1, . . . , Ak

are satisfied on CP , then at least one of B1, . . . , Bm shall be satisfied on CP as well.
Rules of type (21) complete the description of Πtemp(∆) and so, also of Π(∆).

The following result establishes the correspondence between valid timed paths for a
TeAL theory ∆ and answer sets of the program Πtemp(∆)n,h.

Theorem 2. Let ∆ be a TeAL theory and h and n integers such that 0 < n ≤ h. A
sequence p = ⟨s0, t0, pr0, . . . , sn−1, tn−1, prn−1, sn⟩ is a valid timed path of ∆ if and
only if Π(∆)h,n has an answer set A such that for every i, 1 ≤ i ≤ n,

– if f is a fluent, then f ∈ si if and only if holds(f, i) ∈ A
– if pr is a prompt, then pr ∈ pri if and only if happen(pr, i) ∈ A
– there is j, 1 ≤ j ≤ n, such that map(j, i) ∈ A and time(j) = ti.

Moreover, for every answer set A of Π(∆)n,h there is a valid timed path p = ⟨s0, t0, pr0,
. . . , sn−1, tn−1, prn−1, sn⟩ such that A and p satisfy the conditions above.

5 Tools developed for processing TeAL theories

Theorem 2 suggests an approach to testing consistency of temporal requirements rep-
resented by a TeAL theory D. First, one constructs the program Π(D), as described in
the previous section. It involves two integer parameters representing the horizon and the
number of states. Instantiating these parameters with specific values h and n of these
parameters (we recall that we must have 0 < n ≤ h), yields the program Π(D)h,n that
we then process with the clingcon solver.

If for every n = 1, . . . , h, the program Π(D)h,n has no answer sets, then the tran-
sition system TD has no valid timed path of the horizon h. In other words, there is no
way to implement the system so that it runs for h time units. This indicates that the
requirements are inconsistent.

If, on the other hand, for some n, 1 ≤ n ≤ h, Π(D)h,n has answer sets, it means
that the requirements are consistent, as long as we only consider running the system for
h time units. This is not an absolute guarantee of consistency. It may be that the problem
with the requirements shows up only for some larger values of the horizon. For instance,
the temporal constraint “Prompt noLaterThan 10 second after startTime” is
not satisfied by a timed path p if Prompt does not occur on p within the first 10 seconds.
However, if p has a horizon less than 10 then, according to our definition, this temporal
constraint is satisfied on p even if Prompt does not occur on p. This is because paths of
horizon shorter than 10 cannot be used as counterexamples to the constraint — there is

always a possibility that should the path be extended, the Prompt would occur on it and
the constraint would hold. Thus, to demonstrate a problem with this requirement, paths
with the horizon of at least 10 must be considered. In general, the larger the horizon for
which valid timed paths can be found, the stronger the assurance of consistency.

We built a tool, TeALTrans that implements the approach to consistency testing
outlined above (full description and the source code at http://progit.netlab.
uky.edu/teal). To compute answer sets of programs Π(D)h,n the tool uses cling-
con, an ASP solver integrated with a specialized integer constraint solver gecode [16].
Delegating solving linear-integer constraints to gecode gives clingcon a significant per-
formance advantage over “pure” ASP solvers such as clasp [11]. The latter compile all
integer constraints into boolean ones, which results in a dramatic blow-up of the theory
size.

The lack of the absolute guarantee of consistency is a limitation due to our choice
of ASP tools for processing. A more traditional approach to checking consistency of
temporal requirements based on LTL [13] and model checking tools such as Nusmv [8]
in theory does not suffer from these difficulties. We designed a translation from TeAL
to Nusmv and studied the effectiveness of this approach, too.

6 Study Results

We studied the correctness and efficiency of our tool using the six benchmark exam-
ples described in Section 2. For each, we created its corresponding TeAL represen-
tation. We recall that the temporal constraints in our examples involve constants (pa-
rameters). Consistency of the constraints depends on specific values one chooses for
these parameters. For each benchmark problem, we considered four parameter settings:
(1) underconstrained-relaxed or UR, the temporal constraints leave much room for the
system to evolve, they are “easy” to satisfy; (2) underconstrained-tight or UT, the con-
straints are still satisfiable but they significantly restrict the ways in which the system
can evolve; (3) overconstrained-barely or OB, the constraints are inconsistent, but a
small relaxation of some of them would make them consistent; and (4) overconstrained-
much or OM, the constraints are significantly overconstrained and no small relaxations
make them consistent. Finally, we studied three values for the horizon: h = 50, 100,
and 200 and set the time-out limit at 7200 seconds.

The following table shows the results of our study. For each of the problems, it
shows the number of constraints, the parameter settings (UR, UT, OB, and OM), and
the running time. For problems that are consistent, the table also shows the number of
states, n, for which the constraints were shown to be satisfiable. There were no time-
outs when the theories were consistent. For overconstrained cases, the tool timed out
several times (for one problem for h=50, for five problems for h = 100, and for all
problems for h = 200). Whenever the tool timed-out, we show in the table the last
value of n, for which inconsistency was successfully demonstrated.

As mentioned above, the choice of the horizon h may affect our confidence in the
determination that the requirements are consistent, and in general the larger the horizon,
the stronger the evidence of consistency. However, there is a flip side to this observa-
tion. As the results show, the larger the horizon, the more computationally intensive the

Table 1. Results of the study; six problems, 4 parameter settings

Example # Constraints Type Horizon
50 100 200

CM1 23

UR 395 sec, 9 states 1139 sec, 17 states 2151 sec, 34 states
UT 429 sec, 9 states 1353 sec, 17 states 2328 sec, 34 states
OB 5962 sec > 2 hours, 40 states > 2 hours, 37 states
OM 5913 sec > 2 hours, 40 states > 2 hours, 37 states

511Phone 11

UR 564 sec, 9 states 2551 sec, 18 states 3571 sec, 35 states
UT 572 sec, 9 states 2732 sec, 18 states 3691 sec, 35 states
OB > 2 hours, 42 states > 2 hours, 38 states > 2 hours, 36 states
OM > 2 hours, 42 states > 2 hours, 38 states > 2 hours, 36 states

MODIS 10

UR 204 sec, 7 states 589 sec, 12 states 1787 sec, 20 states
UT 221 sec, 7 states 594 sec, 12 states 1901 sec, 20 states
OB 4212 sec 7009 sec > 2 hours, 47 states
OM 4204 sec 6878 sec > 2 hours, 47 states

UAVTCS 13

UR 681 sec, 9 states 1677 sec, 17 states 4104 sec, 33 states
UT 696 sec, 9 states 1783 sec, 17 states 4143 sec, 33 states
OB 5813 sec > 2 hours, 42 states > 2 hours, 35 states
OM 5771 sec > 2 hours, 42 states > 2 hours, 35 states

iTrust 12

UR 606 sec, 7 states 1574 sec, 13 states 3945 sec, 24 states
UT 601 sec, 7 states 1591 sec, 13 states 4043 sec, 24 states
OB 6042 sec > 2 hours, 37 states > 2 hours, 25 states
OM 5906 sec > 2 hours, 37 states > 2 hours, 25 states

EasyClinic 10

UR 306 sec, 8 states 1025 sec, 14 states 2775 sec, 29 states
UT 323 sec, 8 states 1236 sec, 14 states 2834 sec, 29 states
OB 6194 sec > 2 hours, 38 states > 2 hours, 31 states
OM 6275 sec > 2 hours, 38 states > 2 hours, 31 states

computing task becomes. This is because the number of possible values for the num-
ber of states grows with h. Estimating a value for the number of states, with which the
constraints are consistent, is difficult. So our tool considers all of them in turn starting
with n = 1. If clingcon finds an answer set, we assert that the TeAL theory does not
contain inconsistency within the horizon and terminate. Otherwise, we proceed to the
next value of n or terminate (and declare inconsistency) if n = h.

Our results also show that if the TeAL theory is consistent, the consistency could be
established within the time limit imposed (even for h = 200). This is a strong indication
of the practical potential of our tool.

The situation is different when the theory is inconsistent. It takes a long time for
the tool to determine inconsistently. The reason is obvious and related to the discussion
above. If the TeAL theory is inconsistent, then for each number of states, n, 1 ≤ n ≤ h,
clingcon will attempt to determine consistency (that is, find an answer set) and even-
tually fail. However, especially when n is large, the grounding bottleneck reappears
(variables representing states have to be instantiated). This makes it hard for clingcon
to handle large values of n.

Our results suggest two practical steps to address the problem. First, for all prob-
lems and overconstrained parameter settings (when the constraints are inconsistent), the
inconsistency demonstrated itself already when h = 50. Thus, if a tool times out with
a particular value of h, one might try smaller values of h. If the theory is inconsistent,
the tool might now succeed in determining that. Secondly, one might run the tool un-
til it times out. If the last value of n for which the computation succeeded with n is
sufficiently large (for instance, at least h/5), one might take this as an indication of a
possible problem with the requirements.

The results also show that changing the parameter combinations from UR to UT
does not affect the time for computing answer sets. Similarly, there seems to be no such
effect when we change from OB and OM (but here we have fewer data points to draw
conclusions).

Next, the study shows that the number of constraints in the TeAL theory has much
impact on the effectiveness of our tool as does the value of h. The example system with
the largest number of constraints, CM1, does not turn out to be more difficult than the
others. Finally, the study demonstrates the correctness of our tool. In all cases, the re-
sults produced by the tool were consistent with our “manual” analysis of the problems.

We also performed experiments based on LTL, but our translation of the six prob-
lems into the input format of Nusmv resulted in theories that Nusmv could not handle
(timed-out in all cases).

7 Discussion, Conclusions, and Future Work

We presented an approach for analyzing software requirements using answer-set pro-
gramming (ASP). We presented a translation from the TeAL language for describing
temporal requirements to ASP and stated results establishing the correctness of the
translation. We used several benchmark examples taken from real software systems to
test the correctness and efficiency of our tool.

The results we presented indicate the potential of our approach to assist requirement
engineers verify the consistency of temporal requirements. In the six examples that we
studied, the tool provided strong evidence of consistency, whenever the requirements
were consistent. With one exception, it also was able to detect inconsistency when the
theory was inconsistent (with the choice of h = 50).

It has to be noted that when we determine consistency, we do not obtain an absolute
proof of consistency but only a proof of consistency within the specified horizon. For
hard problems, when the tool times out even with smaller values of h, we similarly
only obtain support to the claim of inconsistency but not an absolute proof. This is a
limitation of our approach.

A more traditional approach to checking consistency of temporal requirements based
on LTL [13] and model checking tools such as Nusmv [8] in theory does not suffer from
these difficulties. However, our paper shows that ASP tools that give rise to an approach
based on the parameters h and n are more effective. While the results do not always pro-
vide absolute assurances of consistency (inconsistency), by appropriately choosing the
parameters we can obtain some balance between the strength of the guarantee we get
and the time in which we compute this guarantee.

Our future work involves improving the efficiency of our tool. One possible ap-
proach is to estimate the lower bound and upper bound on the number of states n for
which it is sufficient to run clingcon. Another direction is to study the completeness
threshold for the horizon h, that is, find the value of h such that consistency with re-
spect to h gives an absolute guarantee of consistency (for every TeAL theory such a
threshold exists). Finally, we intend to work on optimizations to our current translation.

At present, when we report inconsistency, we provide no indication which require-
ments cause the problem. We will develop extensions to the present tool that will sug-

gest to the analyst likely combinations of requirements that might be responsible for the
inconsistency.

References

1. CM-1 Dataset PROMISE Website, http://promisedata.org/promised/trunk/
promisedata.org/data/cm1-maintain/cm1-maintain.txt, accessed:
2013-4-18

2. Modis science data processing software requirements specification version 2, sdst-
089, gsfc sbrs (November 1997), http://www.fas.org/irp/program/collect/
uav_tcs.htm

3. Uav tactical control system (May 2010), http://www.fas.org/irp/program/
collect/uav_tcs.htm

4. Regional real–time transit information system system requirements version
3.0 (2012), http://www.mtc.ca.gov/planning/tcip/Real-Time_
TransitSystemRequirements_v3.0.pdf, accessed: 2013-4-18

5. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.) Logic-
based artificial intelligence, pp. 257–279. Kluwer Academic Publishers, Norwell, MA, USA
(2000)

6. Boehm, B., Papaccio, P.: Understanding and controlling software costs. Software Engineer-
ing, IEEE Transactions on 14(10), 1462–1477 (1988)

7. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the role of the
nouns in ir-based traceability recovery. In: Program Comprehension, 2009. ICPC’09. IEEE
17th International Conference on. pp. 148–157. IEEE (2009)

8. Cimatti, A., Giunchiglia, E., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: Integrat-
ing bdd-based and sat-based symbolic model checking. In: Frontiers of Combining Systems,
pp. 49–56. Springer (2002)

9. Firesmith, D.: Specifying good requirements. Journal of Object Technology 2(4), 77–87
(2003)

10. Firesmith, D.: Common requirements problems, their negative consequences, and the indus-
try best practices to help solve them. Journal of Object Technology 6(1), 17–33 (2007)

11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set
solver. In: Logic Programming and Nonmonotonic Reasoning, pp. 260–265. Springer (2007)

12. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Proceed-
ings of the 25th International Conference on Logic Programming. pp. 235–249. ICLP
’09, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-02846-5_22

13. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about systems.
Cambridge University Press (2004)

14. Li, W., Huffman Hayes, J., Truszczynski, M.: Temporal action language (tal): a controlled
language for consistency checking of natural language temporal requirements. In: NASA
Formal Methods, pp. 162–167. Springer (2012)

15. Li, W., Truszczynski, M., Huffman Hayes, J., Brown, D.B.: Temporal action language. Uni-
versity of Kentucky Computer Science Department Technical Report (2012-521-12) (2012)

16. Schulte, C., Lagerkvist, M., Tack, G.: Gecode. Software download and online material at the
website: http://www. gecode. org (2006)

