Designing A GENI Experimenter Tool To Support
The ChoiceNet Internet Architecture

D. Brown, O. Ascigil, H. Nasir, C. Carpenter, J. Griffioen, and K. Calvert
Laboratory for Advanced Networking
University of Kentucky
Lexington, KY 40506
Email: [davidb,onur,nasir,charles,griff,calvert] @netlab.uky.edu

Abstract—Testbeds such as GENI provide an ideal environ-
ment for experimenting with future internet architectures such
as ChoiceNet. Unlike the narrow waist of the current Internet
(IP), ChoiceNet encourages alternatives and competition at the
network layer via an economic plane that allows users to choose
and purchase precisely the services they need.

In this paper we describe our experiences implementing the
ChoiceNet architecture on GENI. Some features of GENI, such
as the ability to program the network layer, to leverage existing
protocols and software, to run real applications generating real-
istic traffic, and the ability to perform long-running experiments
made GENI an ideal platform for ChoiceNet experimentation.
However, we found that GENI currently lacks the tools needed
to make it easy to use these features.

To address this issue, we designed and implemented a GENI
Experimenter Tool specifically designed and tailored to perform
tasks commonly needed by experimenters such as dynamically
configuring nodes, loading and compiling node-specific code,
executing Click modules, running commands on sets of nodes,
accessing the local file system on nodes, and dynamically logging
into nodes.

I. INTRODUCTION

One of the original goals of the GENI network [1] was
to create an at-scale playground for experimentation with next
generation internet architectures [2], [3]. In conjuction with
GENI, the National Science Foundation (NSF) supported sev-
eral research efforts as part of the FIND [4], FIA [5], and now
FIA-NP [6] programs focused on designing, implementing,
and testing next generation internet architectures. Several of
these project have used, or now are using, GENI as a platform
for their experiments. For example, the NSF FIA projects
XIA [7] and NDN [8] have both implemented a prototype
of their network architecture on GENI [9], [10], which speaks
to GENI’s the ability to support a variety of different network
architectures.

In contrast to XIA and NDN — which are focused on devel-
oping and demonstrating new network layer mechanisms such
as addressing and forwarding — the ChoiceNet project [11],
[12] (also an FIA project) is agnostic toward the design of these
network layer mechanisms. Instead, ChoiceNet is focused on
the economics of the network layer. Its goal is to support
mechanisms that enable users to compensate (reward) Internet

This work is supported in part by the National Science Foundation under
grants CNS-1111040 and CNS-134668 Subcontract 1928.

978-1-4799-6204-4/14$31.00 ©2014 IEEE

Service Providers (ISPs) for developing, deploying, and operat-
ing innovative new network layer services. In fact, ChoiceNet
encourages competition between providers, allowing alterna-
tive network layer services to co-exist. For example, ChoiceNet
allows multiple addressing and forwarding mechanisms to co-
exist. One service might offer conventional IP-style packet
lookup and forwarding, while another might offer NDN-style
packet forwarding. As a result, users (or their applications)
are able to select and pay for the network layer forwarding
mechanism that best meets their needs.

To support these types of interactions, ChoiceNet intro-
duces the concept of an economy plane and marketplace
where customers and providers can rendezvous to buy and
sell network layer services. Network layer services (e.g.,
forwarding) operate in the use plane and will not perform
the specified service unless the request for service (e.g., the
packet header) includes a non-forgeable, cryptographically-
signed token obtained from the economy plane demonstrating
“proof-of-purchase”.

To evaluate the ChoiceNet architecture, we developed a
prototype implementation that includes both economy plane
and use plane services. Instead of designing and implement-
ing a single forwarding mechanism, the ChoiceNet prototype
provides the infrastructure for experimenters (acting as ISPs)
to dynamically create and sell any type of new forwarding
mechanisms they can imagine. To dynamically create new
network layer services, ChoiceNet leverages the programmable
routers available in GENI. Experimenters create code that can
be loaded onto ChoiceNet routers to perform a new network
layer task, and then advertise/sell the service in ChoiceNet’s
economy plane.

In this paper we describe our experiences implementing the
ChoiceNet architecture on GENI. Some features of GENI, such
as the ability to program the network layer, to leverage existing
protocols and software, to run real applications generating
realistic traffic, and the ability to perform long-running experi-
ments made GENI an ideal platform for ChoiceNet experimen-
tation. However, we found that GENI currently lacks the tools
needed to make it easy to use these features. To address this
issue, we designed and implmented a GENI Experimenter Tool
specifically designed and tailord to perform tasks commonly
needed by experimenters. Example tasks include dynamically
configuring nodes, loading and compiling node-specific code,
executing click modules, running commands on sets of nodes,
accessing the local file system on nodes, and dynamically
logging into node.

In the next section we provide a brief overview of the
salient features of the ChoiceNet architecture. Section III then
describes our implementation of ChoiceNet on GENI, followed
by Section IV which highlights some of the challenges we
encountered while developing our ChoiceNet prototype. Sec-
tion V describes a new tool called the GENI Experimenter
Tool, that we designed and implemented to address some of
these issues and compares it with existing tools. Section VI
provides some initial performance results using the GENI Ex-
perimenter Tool. Finally, Section VII offers some concluding
thoughts.

II. CHOICENET

The ChoiceNet architecture views all functionality offered
by the network layer as marketable services. Services are
bought and sold in the ChoiceNet economy plane which
defines the protocols that customers and providers use to
discover services and exchange payment for services. Service
providers advertise their services in ChoiceNet marketplaces
where customers can come to discover the list of available
services.

Services are used in the use plane. In order to invoke a
service, the entity requesting the service must provide some
proof that the service has been “paid for” in the economic
plane. There are a variety of standard ways in which a customer
can “pay for” a service, ranging from some monetary value
such as a credit card, to proving knowledge of some (secret)
credential, to presenting unforgeable proof of membership in
a particular group (e.g., faculty, staff or students at a particular
university), to a null payment (i.e., no payment required).
Having “paid for” a service, the customer (user’s application)
receives a time-limited, cryptographically-generated token that
can be presented to the service as “proof of purchase”. Services
verify these tokens before performing the specified service.
As a result, use plane services can enforce the business
relationships that have been established in the economy plane,
ensuring that service is only rendered to paying customers.

Consider for example, the network layer task of forwarding
a packet at a router. In ChoiceNet, the packet forwarding
functionality provided by a router could be a service. In general
a router would only perform its packet forwarding service on
packets carrying tokens showing that the service had been pur-
chased in the economy plane. Services can also be composed to
form more complex services allowing, for example, a broker
to purchase and combine the packet forwarding services of
several routers to form a path forwarding service that carries
packets end-to-end. The broker could then advertise and sell
this composite service in the ChoiceNet marketplace.

Because ChoiceNet is intended to promote competition
among providers and choice for customers, it is capable of
supporting competing network layer services. For example,
one provider may offer a conventional hop-by-hop packet
routing/forwarding service on its routers (or routers it shares
virtually with other providers). Another provider may decide
to offer a source-routed packet forwarding service. A third
provider may offer an NDN-style forwarding service based on
content names, while a fourth offers and XIA-style forwarding
service based on service identifiers. Ancillary services will
in general also be offered. For example, the provider of

source-routed forwarding services might also offer a path
discovery service that senders can contact to obtain paths
across that network—paths that traverse the provider’s source-
routed forwarding services.

To create an environment in which business relationships
can develop and fluorish, ChoiceNet defines the protocols used
to exchange value and it also provides the infrastructure needed
to market, discover, compose, and use services. The next
section describes a prototype implementation of the ChoiceNet
infrastructure running on GENIL.

III. THE CHOICENET PROTOTYPE

To evaluate the ChoiceNet architecture, we developed a
ChoiceNet prototype running on the GENI testbed. The pro-
totype runs in a long-lived GENI slice where experimenters—
acting as providers—can create and market new network layer
services, or—acting as customers—can develop and test applica-
tions that choose and purchase the services they need.

Although code to integrate PayPal into ChoiceNet has
been implemented [13] and could have been used to obtain
actual payments from customers, we did not use this feature
in our testing since our goal was to evaluate the overall
ChoiceNet architecture rather than to actually charge for
services. Although we used “fake payments”, applications did
get back cryptographically signed “proof of purchase” tokens
that services must verify before performing the service. In that
sense, the prototype exhibited all the characteristics of a real
ChoiceNet network.

Because the current Internet does not allow applications to
select the paths their packets traverse, our initial goal was to
develop a service (or set of services) that applications could
invoke to identify and select the network path(s) that best
meet their needs. We began by developing a packet forwarding
service and deploying it at each router in the ChoiceNet
network. Our packet forwarding service relays packets from
a particular ingress port on the router to a particular egress
port on the router, but only if the packet carries the necessary
token (i.e., “proof of purchase”).

To intercept packets passing through routers, we installed
Click [14] on each of the routers in the ChoiceNet slice'. We
then implemented our packet forwarding service as a Click
forwarding element that decides whether to forward a packet or
not by performing a cryptographic check of the token carried in
the packet. If the verification succeeds, our forwarding element
sends the packet to the next router specified in the packet.

The forwarding service at each router periodically sends
service advertisements to a marketplace service we imple-
mented called the path service. The path service acts as
a marketplace in the sense that it receives advertisements
from all the packet forwarding services, including information
about their current performance characteristics (e.g., available
bandwidth and current delay). Although marketplaces often
only provide a listing of available services, our path service
provides the value-added service of path computation. Know-
ing the topology and the performance characteristics of every
packet forwarding service, the path service accepts requests
from applications specifying the type of path desired (i.e., the

!For performance reasons we used the kernel module of Click.

Receiver Legacy
Application

Sender Legacy
Application

Click
Router
with
ChoiceNet

Router
with
ChoiceNet

Click
Router
with
ChoiceNet

Wrapper Librar
PP Y Wrapper Library

Path
Service

Fig. 1: Example GENI Topology from a ChoiceNet
Experiment

source and destination and the path characteristics such as high
bandwidth or low delay), and then identifies the best path for
the application.

Applications interact with the path service by first pur-
chasing the right to request paths from the path service. Once
an application has purchased the ability to request paths from
the path service, all paths returned by the path service are
(seemingly) “free”. That is, the path service computes the
best path for the application, and then purchases (or pre-
purchases) use of the forwarding services along the path on
the application’s behalf. As a result, the application gets back
the set of tokens needed to use at forwarding services along
the path. Because ChoiceNet supports the ability to delegate
tokens to other services, the path service is able to “resell”
the forwarding service tokens to applications. That is, the
path service not only purchases the right to use a forwarding
service, but also the right to delegate the tokens it receives
to other parties. As a result, the forwarding services provide
tokens to the path service that can be delegated to applications.
In short, the paths returned to applications come with the
tokens needed to use each router along the path so that
applications do not need to purchase individual forwarding
services themselves.

Having obtained a path, applications include the path (the
list of packet forwarding services and the associated tokens
required to use them) in the ChoiceNet packet header. The
ChoiceNet packet header consists of a series of ChoiceNet
service requests much like a source route specification in an
IP packet. Each router examines its portion of the ChoiceNet
packet header to verify that forwarding has been paid for
before forwarding the packet.

In an attempt to leverage as much existing software as
possible (i.e., existing IP-based programs and libraries), we
implemented our ChoiceNet packet header in an IPv6 exten-
sion header, using IPv6 addressing as our addressing model.
As a result, each packet forwarding service is defined by the
ingress and egress IPv6 address it relays packets between. The
Click-based packet forwarding element at each routers consults
the IPv6 extension header to find the ingress/egress addresses
and the proof-of-purchase token that must be verified.

To use legacy applications in ChoiceNet, we developed
a “wrapper library” that we dynamically load when running
a legacy application. The wrapper library intercepts standard
network systems calls such as socket, bind, connect, send,

and recv, and adds the ChoiceNet extension header to the
IPv6 packet header. As a result the application is completely
unaware of ChoiceNet. To enable choice, the wrapper library
consults a local ChoiceNet policy file on the sender to know
what type of paths to request for the application. The policy
file might, for example, include an entry indicating that Net-
Flix applications should request high bandwidth paths, while
another entry indicates that interactive first person shooter
games should request low latency paths. Using the policy file
the wrapper obtains the desired path from the path service. It
then includes that path (along with the tokens) in the packets
it sends out. Each Click router along the path verifies the
token before forwarding the packet along the specified route.
Figure 1 illustrates the various components of the ChoiceNet
architecture running on an example GENI slice.

Using the wrapper library, we have run a variety of legacy
applications such as remote login (ssh), file transfer programs,
web clients and servers, and interactive online video games,
each purchasing and using a path tailored to its needs.

IV. CHALLENGES OF USING GENI

GENI is arguably the ideal platform for developing and
evaluating our ChoiceNet prototype. It supports programmable
routers needed by experimenters developing new ChoiceNet
services. It supports experiments at-scale, allowing the creation
of wide area network topologies with realistic bandwidths and
delays. At the same time it allows for emulated topologies and
link characteristics which are useful for targeted experiments.
The ability to create long-running slices allows us to create and
deploy a ChoiceNet network, and, over time, continue to en-
hance the network with new ChoiceNet services. Long-running
experiments combined with the ability of real-world user to
connect to and use services on the ChoiceNet network makes
it great platform for attracting users (customers and providers),
learning how they use the network, and experiencing realistic
traffic loads. Moreover, the ability to quickly create new slices
and tear them down, make it easy to test ChoiceNet with a
wide range of topologies.

Although tools exist to create slices [15], [16], [17] and
to instrumentize and measure slice behavior [18], [19], [20],
we found that the tools needed to setup, configure, and
control a running experiment were quite limited. Tools such
as GUSH [21] and associated tools stork [22] and raven [23]
provide programmatic ways to setup and configure nodes in
a slice, but they have no inherent knowledge of the topology
or how to configure it, placing the entire burden of deciding
what to install where on the experimenter. Consequently, the
configuration files for these tools are often complex and are not
well documented or supported. Moreover, they provide very
limited control over a running experiment/slice.

Post-boot scripts [24] provide another alternative to setup
a slice, but require that the user write the scripts from scratch
to deploy code and configure nodes. Moreover they offer no
runtime control over running experiments.

Systems such as the GENI Desktop [20] are focused on
providing instrumentation and measurement support, with only
minimal support for setup and configuration or runtime control
of an experiment.

Tools like JFED [25] incorporate a graphical time line to
which you can attach bash commands to be run on specific
nodes at specific times. These commands can be saved to the
rspec, but are only run when using the JFED GUI.

Based on our experience implementing ChoiceNet in
GENI, it became clear that there are several tasks that are
likely to be common to almost all GENI experiments and could
benefit from a new tool (or tools) to automate these tasks.
For example, after a slice has been created, an experimenter
will typically need to load software onto the nodes in the
slice, and the software to be loaded will depend on the node’s
role in the topology (e.g., router software will differ from end
system software). Because the software being loaded is often
experimental software that is actively being developed and is
frequently changing, the code may need to be re-downloaded
and compiled on the node using node-specific information
such as the node’s header files and list of network interfaces.
Moreover, this cycle of editing the code, reloading code onto
nodes, (re)compiling the code at each node, and running or
restarting the code on each node can repeat itself over and
over again.

To control nodes in a running experiment, users often need
to run commands on certain subsets of the nodes. Systems like
the GENI Desktop provide some limited support for this, but
do so through a graphical user interface. A similar interface
that can be used in a scripting context would certainly benefit
experimenters. Moreover, specifying nodes to be controlled via
their (IP) addresses is cumbersome and error-prone, especially
as the addresses of nodes in new slices are unpredictable,
even if generated from an identical RSPEC. As such GENI
slices would benefit from a simpler way to identify nodes to
be controlled at runtime.

In the case of our ChoiceNet prototype, we needed the
ability to add new router services (e.g., packet forwarding)
which required significant effort to install and configure Click,
followed by the challenges of enhancing Click with new
forwarding elements. Because many experiments will require
the ability to modify router behaviour, creating tools to assist
with the installation and setup of Click routers and modules
would greatly simplify the task of programming GENI routers.

V. THE GENI EXPERIMENTER TOOL

To assist with common tasks such as those described in
the previous section, we designed and implemented a new
GENI Experimenter Tool (GET) that makes it easy for users
to dynamically perform—or to write scripts that perform—
common tasks. We designed the tool to assist us in deploying
and running ChoiceNet experiments on GENI, and thus some
of the functionality is tailored to the needs of ChoiceNet
experiments. While some of the tool’s logic is devoted to
ChoiceNet-specific configuration tasks, we believe most of the
day-to-day functionality of GET is common to any experiment
hosted on GENI, and thus would be of use to any researcher
working within the GENI framework. The tool is designed to
run in Unix environments, but can also be run on MS Windows
using Unix-emulation packages like cygwin?.

The tool is aware of slices and begins by reading in the
RSPEC (or manifest) associate with a slice. The location of the

2Remote file access may not be fully supported in non-Unix environments.

RSPEC is specified either through a command line argument
to the program or through a configuration file. The tool then
parses and extracts the topology from the RSPEC and then
allows the user to reference nodes within the experiment using
user-friendly node names (e.g., VM-0) specified in the RSPEC
as opposed to the typically more arcane DNS or physical IP
addresses (and possibly port number) of the individual nodes
(e.g., pcb.lan.net.somewhere.edu port 34912).

Once the topology has been read and parsed, the tool is able
to assist with a variety of tasks that experimenters commonly
do including:

e Listing information about nodes — Lists informa-
tion about one or more nodes within the slice including
their network connectivity.

e Remote file access — Automatically creates an ssh-
based file share to files on a node in the slice.
While this has many uses, it is particularly useful for
accessing log files on nodes in the topology that record
information about a running experiment.

¢ Remote command execution — Allows the execution
of a specific shell command on all (or any subset) of
the nodes in a slice, with options for file or console
output and multithreaded execution.

e Remote login — Establishes an ssh session with the
node specified by the (hopefully friendlier) node name
contained in the RSPEC>.

In addition, the tool supports some ChoiceNet-specific
features that could be re-programmed to the user’s needs if
desired:

e IPv6 configuration — Automates IPv6 address as-
signment and routing. By default, nodes are assigned
link-local IPv6 addresses which are often not sufficient
for the needs of the experimenter. Moreover, unlike
IPv4 routing tables that are automatically configured
so routing works across the slice, IPv6 routing tables
are not setup by default. The GET tool assists by
assigning addresses and setting up IPv6 routing on
behalf of the user.

e ChoiceNet Code installation — Automatically in-
stalls the ChoiceNet code suite on all nodes in a
slice. However, this feature is somewhat generalizable
to software beyond ChoiceNet due to the fact that it
pulls code from a configurable git repository and then
builds the software based on configurable compilation
commands. Moreover, the code that is installed and
compiled will differ based on whether the node is
acting as a router or an end system.

e ChoiceNet Router activation — Automatically
starts/stops ChoiceNet functionality on routers within
the slice. Like the code installation, this feature can
be customized through configuration files.

Because GET is aware of the topology, it knows which
nodes are acting as routers and which nodes are acting as end

3GET"s initial development was largely spurred by the frustration of having
to constantly look up names and ports to ssh to — a very common task when
working with virtual machines (VMs).

systems (hosts). Consequently, GET can automatically make
decisions about what code needs to be installed on each node,
how to configure each node, and which services need to be
started on each node. This frees GET users from having to keep
track of which nodes are which and then run the appropriate
commands on them.

All of GET’s features (described above) share the same
method of identifying nodes to which the operation is to be
applied. There are basically three ways to specify nodes. Users
can request that operations be applied to “router” nodes (those
having multiple network interfaces), hosts (end systems), or
arbitrarily included or excluded nodes (by name with wildcard
names also supported). For example, a user is able to easily run
a command on all routers simply by selecting “routers” as the
target node type. Similarly, a user can easily run a command
on all “host” nodes. As another example, a user could run
a command on all nodes whose RSPEC names begin with
VM-.

To help deal with output from commands run on the
specified nodes, GET provides the ability to collect all the
output into a single file, or to split the output into separate
files based on the node name and user-specified expression.
For example, a user might give the name %.runl-output.txt as
the output file name where the % would be replaced with the
name of the node where the output file was generated (e.g.,
VM-0.runl-output.txt).

In some cases, it is helpful to know what nodes GET would
apply an operation to. Consequently, GET has an option to
print out the operations or commands it would have executed
without actually taking any action. This can be helpful in
determining which nodes would be affected by an operation,
or to show how to perform an operation by hand.

For functions that target multiple nodes within a GENI
slice, GET supports multithreaded execution, interacting with
multiple nodes in the slice simultaneous. This is the default
behavior as it generally reduces the amount of time required
to perform the specified task. However, in cases where multiple
VMs are hosted on the same physical nodes, the concurrent
execution can actually increase the time required. In such
cases, GET supports a single threading option that can improve
performance.

A list of example GET commands is shown in Figure 2.
Our experience using GET has significantly improved the pro-
ductivity of our team. Beyond making it trivial to ssh to nodes
in a slice using user-friendly names or running commands
remotely, GET has brought down the time requirement for
configuring a newly create slice from hours of repetitive (and
unfortunately error-prone) routing configuration and software
building to a pair of shell commands and tens of minutes
minutes (or less) of waiting until ChoiceNet is fully operational
in the slice.

While originally designed as a ChoiceNet-specific tool,
GET has been developed as generally as possible. Many of its
features can be immediately used by any other experimenter
(e.g., remote login, remote file access, running commands on
certain nodes, etc.). Other ChoiceNet-specific features would
require some modifications. However,the ChoiceNet-specific
functions of the tool are developed as a “module” on top of
the general-purpose GENI interaction functionality, implying

get list
List all nodes

get list -R
List all nodes identified as routers

get ssh VM-0
Initiate ssh connection with node named
“VM-0”

get list -R —-x rt=
List all nodes identified as routers, excluding
those with names that match “rt*”

get cmd "ls /etc" -h host=
Execute “Is /etc” on all nodes with names that
match “host*”

get configure -h VM-0,VM-1
Run ChoiceNet configuration (including IPv6
neighbor and routing tables) on nodes VM-0
and VM-1

get install -H
Install ChoiceNet suite on all non-router
nodes

get install -s -R
Install ChoiceNet suite on all routers and
force single-threaded execution

get cmd "hostname" -t
Execute “hostname” on all nodes and force
multithreaded execution.

get cmd "uname -a" -o ’'%.txt’
Execute “uname -a” on all nodes and save
output for each command to a unique file (e.g,
a node named VM-1 will generate VM-1.txt)

get sshfs VM-1 ~/vml
Use sshfs to map a node named “VM-1""’s file
system to local directory ~/vml

Fig. 2: Example GET commands

that it could be easily customized for use in other experiments
as well.

VI. EXPERIMENTAL RESULTS

To evaluate the GET tool, we created several GENI slices
(topologies) of varying size, and then used GET to install the
ChoiceNet system on the slices. We also used GET to interact
with and control the slices once they were set up.

Figure 3 shows example output from GET for a 7 node
topology. In particular it shows output from the list operation,
remote command execution, and remote config file access.
In this example, the list command is first used to obtain the
names of the nodes identified as hosts (using -H option). Next,
the route command is remotely executed on a particular host
— namely VM-5. The example also demonstrates running a
netstat command on all nodes identified as routers (using the -
R option), which prints the routing tables from each each router
following the node’s name. Finally, GET is used to access
a configuration file (“config”) on the router node VM-0 by
mounting VM-0’s file system to the user’s machine (via the
sshfs option of GET).

Setting up a ChoiceNet slice involves several steps that
are greatly simplified by GET, including installing a wrapper

File Edit Tabs Help
$ get -H list a
VM - pcl2.utahddc.geniracks.net:31034

VM:ife (10.10.1.1/02:1d:25:c4:67:22) -> VM-0:if@ (10.10.1.2/02:91:e1:97:8F:e7)

IVM-5 - pcl2.utahddc.geniracks.net:31040
VM-5:if@ (10.10.8.2/02:38:aa:81:e6:67) -> VM-4:if3 (10.10.8.1/02:fb:87:ce:3d:ce)

$ get -h VM-5 cmd "route”

IVM-5:

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
default 172.16.0.1 0.0.0.0 uG a a 0 ethe
10.0.0.0 VM-4-1lan7 255.0.0.0 uG 2] 2] 0 ethl
10.10.8.0 * 255.255.255.8 u <] <] 6 ethl
172.16.0.8 * 255.240.0.0 u <] <] 6 ethe
$ get -R cmd "netstat -rn | head -n 4"

VM-0:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 172.16.08.1 0.0.0.8 uG 08 0 ethe
18.0.0.0 10.10.2.2 255.0.0.0 uG 08 6 ethz
IVM-1:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 172.16.08.1 0.0.0.8 uG 08 0 ethe
18.0.0.0 10.10.2.1 255.0.0.0 uG 08 6 ethl
IVM-2:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 172.16.08.1 0.0.0.8 uG 08 0 ethe
18.0.0.0 10.10.4.1 255.0.0.0 uG 08 6 ethl
IVM-3:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 172.16.08.1 0.0.0.8 uG 08 0 ethe
18.0.0.0 10.10.7.2 255.0.8.0 uG 08 6 eth2
VM-4:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 172.16.08.1 0.0.0.8 uG 08 0 ethe
18.0.0.0 19.10.3.1 255.0.8.0 uG 08 6 ethl

$ get sshfs VM-8 ./router@

$ cat ./routerd/click/config
FromDevice@l -> ChoiceHost@2;
FromDevice@3 -> ChoiceHost@4;
FromDevice@s -> ChoiceHost@s;
FromDevice@7 -> ChoiceHost@s;

i |

Fig. 3: Example Output from GET

library and ChoiceNet applications, adding IPv6 addresses to
the interfaces, inserting routing table entries to host nodes
and installing the Click router that is programmed to perform
ChoiceNet forwarding services to the router nodes in the GENI
experiment topology.

Issuing commands from GET to a single node, as one
would expect, takes relatively little time. The main advantage
in this case is the simplified user interface. For example,
configuring a single host (i.e. adding IPv6 addresses and
configuring routing tables) using GET takes around 2 seconds®,
while installing and compiling the necessary applications and
wrapper library on a single host node takes as much as 11
seconds. Installing and compiling the Click router on a single
router node takes 8 minutes and 40 seconds which is dominated
by the file copy and compilation times.

An important feature of the GET tool is the ability to use
either multi-threaded execution or single-threaded execution to
carry out tasks on multiple nodes. In the multi-threaded case,
installation and compilation are carried out in parallel, while
the single-threaded option causes installation and compilation
to occur on one node at at time.

Figures 4 and 5 shows the time needed to set up ChoiceNet
on topologies of sizes ranging from 3 nodes to 15 nodes.
Each topology consisted of two end system (host) machines
with the remaining machines acting as routers. Figure 4

4All performance numbers were obtained using Xen nodes running on
InstaGENI racks.

Multi-Threaded GET Tool
400

Time to configure
Time to install

300 b

200 b

Time in Seconds

100 b

50 R

2 4 [8 10 12 14 16

Number of Nodes

Fig. 4: Multi-threaded time neeed to install/compile and
configure ChoiceNet over various size GENI topologies using
GET

Single-Threaded GET Tool
5500

Time to configure
Time to install B

5000
4500 b
4000 b
3500 b
3000 1

2500 b

Time in Seconds

2000 b
1500 1
1000 b

500 b

2 4 6 8 10 12 14 16

Number of Nodes

Fig. 5: Single-threaded time neeed to install/compile and
configure ChoiceNet over various size GENI topologies using
GET

shows the time required when multi-threaded installation is
used while Figure 5 show the time required when single-
threaded installation is used. In both cases the overall setup
time is dominated by the software installation and compilation
phase, with the configuration phase taking very little time
(i.e., installation and compilation takes tens of minutes, while
configuration takes only a few seconds). Not surprisingly, the
time required for the single-threaded case grows linearly as
the number of nodes increases, while the time required for the
multi-threaded case only grows a little since the operations are
carried out in parallel. As noted earlier, the main reason for
single-threaded execution occurs when all nodes are allocated
from the same rack causing the nodes to compete for resources
on the rack when run in multi-threaded mode. In that case,
single-threading removes the competition and associated multi-
threading overhead.

VII. CONCLUSION

In this paper, we introduced the GENI Experimenter Tool,
which is specifically designed and tailored to perform tasks

commonly needed by experimenters. GET is useful for exper-
imenters to configure nodes, place and install node-specific
code and modules as well as executing custom commands
on a set of nodes and collecting their outputs. In addition,
GET has the capability of carrying out tasks on multiple nodes
in parallel and thus completes time-consuming tasks such as
installing a large module (e.g. Click router) on all experiment
nodes rapidly. Overall, GET has proven to be very useful for
our future Internet architecture and protocols experiments on
GENI and it is customizable to be used by other experimenters
from different areas.

REFERENCES

[11 G. P. Office, “Global Environment for Network Innovations - System
Overview,” 2008. [Online]. Available: http://www.cra.org/ccc/files/docs/
GENISysOvrvw092908.pdf

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet Impasse through Virtualization,” vol. 38, no. 4, 2005, pp. 33—
41, also appears as GENI Design Document GDD-05-01.

[3] D. Clark, S. Shenker, and A. Falk, “GENI Research Plan,” April 2007,
GDD-06-28.

[4] “National Science Foundation NeTS FIND (Future INternet Design)
initiative.” [Online]. Available: http://www.nets-find.net/

[5] “National Science Foundation Future Internet Architecture (FIA)
project.” [Online]. Available: http://www.nets-fia.net/

[6] “National Science Foundation Future Internet Architectures - Next
Phase (FIA-NP).” [Online]. Available: http://www.nsf.gov/pubs/2013/
nsf13538/nsf13538.htm

[71 D. Han, A. An, M. Machado, A. Mukundan, W. Wu, A. Akella, D. G.
Andersen, J. W. Byers, S. Seshan, and P. Steenkiste, “XIA: Efficient
Support for Evolvable Internetworking,” in in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2012.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs,
and R. L. Braynard, “Networking Named Content,” in In CoNEXT
09: Proceedings of the 5th international conference on Emerging
networking experiments and technologies, 2009, pp. 1-12.

[9] “XIA Demo at the 15th Geni Engineering Conference (GEC).” [Online].
Available: http://www.cs.cmu.edu/~./xia/Events-News/Events-News/
gecl5.html

[10] “NDN Demo at the 13th Geni Engineering Conference (GEC).”
[Online]. Available: http://groups.geni.net/geni/wiki/GEC13Agenda/
GENIUpdates

[11] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine,
and A. Nagurney, “Choice as a Principle in Network Architecture,” in
Proc. of ACM Annual Conference of the Special Interest Group on Data
Communication (SIGCOMM), August 2012, pp. 105-106, (Poster).

[12] T. Wolf, J. Griffioen, K. Calvert, R. Dutta, G. Rouskas, 1. Baldine, and
A. Nagurney, “ChoiceNet: Toward an Economy Plane for the Internet,”
ACM SIGCOMM Computer Communication Review, vol. 44, 2014.

[13] X. Chen, T. Wolf, J. Griffioen, O. Ascigil, R. Dutta, G. Rouskas, S. Bhat,
and K. Calvert, “Design and Implementation of an Economy Plane for
the Internet,” under review.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek, “The Click
Modular Router,” TOCS, vol. 18, no. 3, pp. 263-297, 2000.

[15] “Flack Tutorial.” [Online]. Available:
ProtoGeni/wiki/FlackTutorial

[16] “GENI Portal.” [Online]. Available: http://groups.geni.net/geni/wiki/
GEC15Agenda/PortalClearinghouse

[17] “GENI OMNI Tutorial.” [Online]. Available: http://trac.gpolab.bbn.
com/gcf/wiki/Omni

[18] “GEMINI: A GENI Measurement and Instrumentation Infrastructure.”
[Online]. Available: http://groups.geni.net/geni/wiki/GEMINI

[19] “GIMI: Large-scale GENI Instrumentation and Measurement Infras-
tructure.” [Online]. Available: http://groups.geni.net/geni/wiki/GIMI

[20] “GENI Desktop.” [Online]. Available: http://genidesktop.netlab.uky.edu

http://www.protogeni.net/

[21]
[22]

(23]

[24]
[25]

“Gush Project.” [Online]. Available: http://gush.cs.williams.edu
“PlanetLab Stork Project.” [Online]. Available: http://www.cs.arizona.
edu/stork/

“Raven Project.” [Online]. Available: http://groups.geni.net/geni/wiki/
ProvisioningService/

“ExoGENI.” [Online]. Available: https://wiki.exogeni.net/

“jFed: A Java-based Framework to support SFA Testbed Federation
Client Tools.” [Online]. Available: http://jfed.iminds.be/

